• 제목/요약/키워드: Micro-stepping

검색결과 71건 처리시간 0.024초

펜타곤 결선방식의 5상 하이브리드 스텝모터의 미세스텝 구동회로 개발 (Development of Micro-Stepping Drive Circuit for 5-Phase Step Motor having Pentagon Type Winding)

  • 임상덕;최중경;박승엽;안호균;김세일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.568-570
    • /
    • 1997
  • In this paper, we develope the micro-stepping driver circuit for 5-phase step motor having pentagon type winding and improve the position control performance of the rotor, $0.45^{\circ}$, $0.028125^{\circ}$, $0.0140625^{\circ}$ per step.

  • PDF

2축 윤곽제어를 위한 소프트웨어 보간자 개발에 관한 연구 (Development of Software Interpolator for Two-Axis Contouring Control)

  • 김교형;이기설
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.389-396
    • /
    • 1988
  • 본 연구에서는 위의 세가지 보간 알고리즘 가운데서 가장 속도의 균일성이 좋은 DDA방식을 채택하였다. 그리고 윤곽제어에서 가공경로는 대개 직선과 원호 구간의 조합으로 구성되어질 수 있기 때문에, 본 연구에서는 직선 및 원호보간만 고려하기로 한다.

스텝 모터에 의한 X-Y 평면 구동 제어 시스템 개발 (DEVELOPMENT OF X-Y PLANE DRIVING CONTROL SYSTEM BY STEPPING MOTOR)

  • 이사영;김봉희;박성대;김홍철;김원철;홍일선;우천희;오봉환;이복구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.2166-2168
    • /
    • 1998
  • A PWM inverter using power FET is developed to switch the excitation current of 5 phase hybrid stepping motor for the use of driving X, Y table. A micro processor based controller is also developed to control the excitation current switching of X, Y axis stepping motor as well as synchronizing operation of Z-axis servo motor. The developed driving control system is applied to the industrial embroidery sewing machine.

  • PDF

마이크로 가공시스템을 위한 언로딩 매니퓰레이터 개발 (Development of an unloading manipulator for micro manufacturing system)

  • 윤덕원;신동익;김진호;한창수;이낙규;이혜진;류영선
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.187-192
    • /
    • 2007
  • In this paper we present a 3-DOF manipulator of which task is to unload the product from a micro factory. The micro factory developed by KITECH presses sheet metal to produce a micro valve that is used for micro pump. Our research is focused on the development of a small-sized unloading manipulator which works in the narrow workspace between the dies. We have implemented pick-and-place task with vacuum pressure and 3-DOF motion with stepping motors. We present the design procedures and analysis required in each module.

저 회전강성 진동 절연기에 의한 X-밴드 안테나의 고각방향 미소진동 절연 효과 검증 (Verification of Micro-vibration Isolation Performance by using Low Rotational Stiffness Isolator under Elevation Direction Operation of the X-band Antenna)

  • 전수현;이재경;정새한솔;이명재;오현웅
    • 한국소음진동공학회논문집
    • /
    • 제25권4호
    • /
    • pp.238-246
    • /
    • 2015
  • A stepping motor is widely used to operate the elevation and azimuth stage of the X-band antenna with 2-axis gimbal system for effective image data transmission from a satellite to a ground station. However, such stepping motor also generates an undesirable micro-vibration which is one of the main disturbance sources affecting image quality of the high-resolution observation satellite. In order to improve the image quality, the micro-vibration isolation of the X-band antenna system is essential. In this study, the low rotational stiffness isolator has been proposed to reduce the micro-vibration disturbance induced by elevation direction operation of the X-band antenna. In addition, its structural safety was confirmed by the structure analysis based on the derived torque budget. The effectiveness of the design was also verified through the micro-vibration measurement test.

미세스텝 제어 방식에 의한 PM 스텝 모터의 위치 및 속도 제어에 관한 연구 (A Study on the Position and Speed Control of PM Step Motor Using Micro-Step Control Drive)

  • 김동현;한권상
    • 대한전자공학회논문지
    • /
    • 제27권6호
    • /
    • pp.871-878
    • /
    • 1990
  • The control method which electrically subdivides 1 step(1.8\ulcornerstep) of a PM step motor into 64 micro-step (0.028\ulcornerstep) is realized using micro-step algorithm on the basis of the look up table method and the position and velocity control using Z-80 microprocessor is also realized. With micro-stepping. The resolution of the system is improved, also by micro-step control of driving-current of the step motro, which is followed by the increase of micro-step subdivision-coefficient, the precise position and velocity control of step-motor can be realized and the stabilization of the system is improved.

  • PDF

CHARATERISTIC IMPROVEMENT OF 5 PHASE STEP MOTOR BY USING MICRO-STEP DRIVER IN X-Y AXIS SOLDERING MACHINE

  • Park, Chul-Soon;Kim, Sung-Hoon;Ahn, Ho-Kyun;Park, Seung-Kyu
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.97-100
    • /
    • 1998
  • In this paper, micro step driving method is used for the high performance motion control and low vibration and low noise in an X-Y axis soldering machine for factory automation. The improvement of the electrical and mechanical driving characteristic of a stepping motor is achieved by applying microstep driver.

  • PDF

전자 디스펜서용 단일칩 제어기 설계 (Design of an One-Chip Controller for an Electronic Dispenser)

  • 원영욱;김정범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.137-140
    • /
    • 2005
  • The electronic dispenser is composed of electronic part and mechanical part. Electronic part is consisted of input keypad, micro-controller, display module, and pump module. In this paper we designed micro-controller for electronic part. The micro-controller controls display module and pump module. The display module is composed by LCD device, and the pump module is composed by motor device. The micro-controller for an electronic dispenser is designed by VHDL. We used WX12864APl for the LCD device and SPS20 for the stepping motor. Also, the micro-controller is designed by Altera Quartus tool and verified with Agent 2000 Design-kit using APEX20K Device. In this paper, we present possibility to adopt of biotechnology field through designing of one-chip controller for an electronic dispenser.

  • PDF

미소경 드릴링 머신의 개발과 절삭현상의 연구 (A study on the Development of Micro Hole Drilling Machine and its Mechanism)

  • 백인환;정우섭
    • 한국정밀공학회지
    • /
    • 제12권1호
    • /
    • pp.22-28
    • /
    • 1995
  • Micro Drills have found ever wider application. However micro drilling is a machining to integrate the difficult machinablities such as tool stiffness, position control and revolution accuracy, and is known to cost and time consuming. So, this study aimed to practice ultraminiature drilling(0.05 .phi. ) wiht simple component, if possible. System is developed as the three modules : feed drives, spindle and monitoring part. The dynamics of measured current signals from the spindle of Micro Hole Drilling machine are investigated to establish the criteria of stepfeed mechanism. Cutting experiments identify the relationship of spindle rpm, feed rate and tool life. The smaller drill diameter is, the more suitable cutting condition have to be selected because of chip packing.

  • PDF

Programmable Magnetic Actuation of Biomolecule Carriers using NiFe Stepping Stones

  • Lim, Byung-Hwa;Jeong, Il-Gyo;Anandakumar, S.;Kim, K.W.;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.363-367
    • /
    • 2011
  • We have designed, fabricated and demonstrated a novel micro-system for programmable magnetic actuation using magnetic elliptical pathways on Si substrates. Lithographically patterned soft NiFe ellipses are arranged sequentially perpendicular to each other as stepping stones for the transport of magnetic beads. We have measured the magnetization curve of the ellipsoid ($9\;{\mu}m{\times}4\;{\mu}m{\times}0.1\;{\mu}m$) elements with respect to the long and short axes of the ellipse. We found that the magnetization in the long axis direction is larger than that in the short axis direction for an applied field of ${\leq}$ 1,000 Oe, causing a force on carriers that causes them to move from one element to another. We have successfully demonstrated a micro-system for the magnetic actuation of biomolecule carriers of superparamagnetic beads (Dynabead$^{(R)}$ 2.8 ${\mu}m$) by rotating the external magnetic field. This novel concept of magnetic actuation is useful for future integrated lab-on-a-chip systems for biomolecule manipulation, separation and analysis.