• Title/Summary/Keyword: Micro-soldering

Search Result 30, Processing Time 0.031 seconds

Trends of Packaging and Micro-joining Technologies for Car Electronics (자동차용 전장품의 패키징 및 마이크로 접합기술 동향)

  • Lee, Gyeong Ah;Cho, Do Hoon;Sri Harini, Rajendran;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.7-16
    • /
    • 2022
  • Recently, the automobile industry is rapidly changing due to technological development. Next-generation cars with high technology and new functions are on the market. It is essential to develop electronic devices to meet the condition of next-generation cars. In this study, the authors have reviewed recent trends of automotive electronics and packaging technology. Automotive electronics are used in harsh environments compared with other industries. Thus, it is important to improve the reliability of device junctions that directly affect electronics performance. Soldering, TLP (transient liquid phase bonding), and sintering are introduced for the bonding methods in car electronics.

Flip-chip Bonding Using Nd:YAG Laser (Nd:YAG 레이저를 이용한 Flipchip 접합)

  • Song, Chun-Sam;Ji, Hyun-Sik;Kim, Jong-Hyeong;Kim, Joo-Hyun;Kim, Joo-Han
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.120-125
    • /
    • 2008
  • A flip-chip bonding system using DPSS(Diode Pumped Solid State) Nd:YAG laser(wavelength : 1064nm) which shows a good quality in fine pitch bonding is developed. This laser bonder can transfer beam energy to the solder directly and melt it without any physical contact by scanning a bare chip. By using a laser source to heat up the solder balls directly, it can reduce heat loss and any defects such as bridge with adjacent solder, overheating problems, and chip breakage. Comparing to conventional flip-chip bonders, the bonding time can be shortened drastically. This laser precision micro bonder can be applied to flip-chip bonding with many advantage in comparison with conventional ones.

Aging Characteristic of Shear Strength in Micro Solder Bump (마이크로 솔더 범프의 전단강도와 시효 특성)

  • 김경섭;유정희;선용빈
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.72-77
    • /
    • 2002
  • Flip-chip interconnection that uses solder bump is an essential technology to improve the performance of microelectronics which require higher working speed, higher density, and smaller size. In this paper, the shear strength of Cr/Cr-Cu/Cu UBM structure of the high-melting solder b01p and that of low-melting solder bump after aging is evaluated. Observe intermetallic compound and bump joint condition at the interface between solder and UBM by SEM and TEM. And analyze the shear load concentrated to bump applying finite element analysis. As a result of experiment, the maximum shear strength of Sn-97wt%Pb which was treated 900 hrs aging has been decreased as 25% and Sn-37wt%Pb sample has been decreased as 20%. By the aging process, the growth of $Cu_6Sn_5$ and $Cu_3Sn$ is ascertained. And the tendency of crack path movement that is interior of a solder to intermetallic compound interface is found.

A Study on Bumping of Micro-Solder for Optical Packaging and Reaction at Solder/UBM interface (광패키징용 마이크로 솔더범프의 형성과 Contact Pad용 UBM간의 계면 반응 특성에 관한 연구)

  • 박종환;이종현;김용석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.332-336
    • /
    • 2001
  • In this study, the reaction at UBM(Under Bump Metallurgy) and solder interface was investigated. The UBM employed in conventional optical packages, Au/Pt/Ti layer, were found to dissolve into molten Au-Sn eutectic solder during reflow soldering. Therefore, the reaction with different diffusion barrier layer such as Fe, Co, Ni were investigated to replace the conventional R layer. The reaction behavior was investigated by reflowing the solder on the pad of the metals defined by Cr layer for 1, 2, 3, 4, and 5 minutes at 330$^{\circ}C$. Among the metals, Co was found to be most suitable for the diffusion barrier layer as the wettability with the solder was reasonable and the reaction rate of intermetallic formation at the interface is relatively slow.

  • PDF

A Study on the Optimization of IR Laser Flip-chip Bonding Process Using Taguchi Methods (다구찌법을 이용한 IR 레이저 Flip-chip 접합공정 최적화 연구)

  • Song, Chun-Sam;Ji, Hyun-Sik;Kim, Joo-Han;Kim, Jong-Hyeong;Ahn, Hyo-Sok
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.30-36
    • /
    • 2008
  • A flip-chip bonding system using IR laser with a wavelength of 1064 nm was developed and associated process parameters were analyzed using Taguchi methods. An infrared laser beam is designed to transmit through a silicon chip and used for transferring laser energy directly to micro-bumps. This process has several advantages: minimized heat affect zone, fast bonding and good reliability in the microchip bonding interface. Approximately 50 % of the irradiated energy can be directly used for bonding the solder bumps with a few seconds of bonding time. A flip-chip with 120 solder bumps was used for this experiment and the composition of the solder bump was Sn3.0Ag0.5Cu. The main processing parameters for IR laser flip-chip bonding were laser power, scanning speed, a spot size and UBM thickness. Taguchi methods were applied for optimizing these four main processing parameters. The optimized bump shape and its shear force were modeled and the experimental results were compared with them. The analysis results indicate that the bump shape and its shear force are dominantly influenced by laser power and scanning speed over a laser spot size. In addition, various effects of processing parameters for IR laser flip-chip bonding are presented and discussed.

Precise composition control of Sn-3.0Ag-0.5Cu lead free solder bumping made by two binary electroplating (이원계 전해도금법에 의한 Sn-3.0Ag-0.5Cu 무연솔더 범핑의 정밀 조성제어)

  • Lee Se-Hyeong;Lee Chang-U;Gang Nam-Hyeon;Kim Jun-Gi;Kim Jeong-Han
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.218-220
    • /
    • 2006
  • Sn-3.0Ag-0.5Cu solder is widely used as micro-joining materials of flip chip package(FCP) because of the fact that it causes less dissolution and has good thermal fatigue property. However, compared with ternary electroplating in the manufacturing process, binary electroplating is still used in industrial field because of easy to make plating solution and composition control. The objective of this research is to fabricate Sn-3.0Ag-0.5Cu solder bumping having accurate composition. The ternary Sn-3.0Ag-0.5Cu solder bumping could be made on a Cu pad by sequent binary electroplating of Sn-Cu and Sn-Ag. Composition of the solder was estimated by EDS and ICP-OES. The thickness of the bump was measured using SEM and the microstructure of intermetallic-compounds(IMCs) was observed by SEM and EDS. From the results, contents of Ag and CU found to be at $2.7{\pm}0.3wt%\;and\;0.4{\pm}0.1wt%$, respectively.

  • PDF

A Study on the Initial Bonding Strength of Solder Ball and Au Diffusion at Micro Ball Grid Array Package (${\mu}BGA$ 패키지에서 솔더 볼의 초기 접합강도와 금 확산에 관한 연구)

  • Kim, Kyung-Seob;Lee, Suk;Kim, Heon-Hee;Yoon, Jun-Ho
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2001
  • This paper presents that the affecting factors to the solderability and initial reliability. It is the factor that the coefficient of thermal expansion between package and PCB(Printed Circuit Board), the quantity of solder paste and reflow condition, and Au thickness of the solder ball pad on polyimide tape. As the reflow soldering condition for 48 ${\mu}BGA$ is changed, it is estimated that the quantity of Au diffusion at eutectic Sn-Pb solder surface and initial bonding strength of eutectic Sn-Pb solder and lead free solder. It is the result that quantitative measurement of Au diffusion quantity is difficult, but the shear strength of eutectic Sn-Pb solder joint is 842 mN at first reflow and increases 879 mN at third reflow. The major failure mode in solder is judged solder fracture. So, Au diffusion quantity is more affected by reflow temperature than by the reflow times.

  • PDF

An experimental study of the strength and internal structure of solder joint of fixed partial denture (가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Sang-Nam;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.23 no.1
    • /
    • pp.39-59
    • /
    • 1985
  • The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

  • PDF

The Study on Micro Soldering Using Low-Residue Flux in $N_2$Atmosphere (질소 분위기에서 저잔사 플럭스를 사용한 마이크로 솔더링에 관한 연구)

  • 최명기;정재필;이창배;서창제;황선효
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.7-15
    • /
    • 2000
  • The purpose of this work is to evaluate the solderahility and characteristics of solder joints. Bridge defect of solder joint was examined in natural atmosphere and $N_2$ condition. Consequently, wettability was excellent for each of Sn-Pb plated Cu specimen, Sn plated Cu specimen, and Cu polished in $N_2$ condition. The wetting time in $N_2$ condition was shorter than that of natural atmosphere condition, showing the decreasing values of about 0.2~0.45 seconds. The max. wetting force under the $N_2$ condition was more increasing that of natural atmosphere condition, showing the increasing values of about 1.8~2.8 N. With the result of wetting balance test, the wetting time ($t_2$) and wetting farce according to increasing amount of $N_2$ from 10 1/min to 30 1/min, the wetting time ($t_2$) was reduced about 0.25 second and wetting force was increased about 2.3 N. In non-cleaning flux, when $N_2$ gas is applied, it is compensated to decrease of wettability. In the case of using the $N_2$ gas, the wettability was improved. The reason for improving wettability is due to preventing the formation of dross. The generation rate of bridge in $N_2$ condition decreased than that of natural atmosphere, and when the specimen had a fine pitch, the rate of bridge defects was considerably decreased in $N_2$ condition, showing the decreasing rate of 25~75%.

  • PDF

Design and Fabrication of the Digital Iron Using the Micro-processor (마이크로프로세서를 이용한 디지털 전기인두기의 설계 및 제작)

  • An, Yang-Ki;Yoon, Dong-Han
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.33-41
    • /
    • 2001
  • The digital iron using ${\mu}$ processor is designed and compared experimentally with the conventional analog Iron. Designed digital iron shows two improved temperature control characteristics. First, the reduction of the difference error between the user setting temperature and the real temperature of the iron tip is examined. When the iron temperature is set to $200[^{\circ}C]$, $300[^{\circ}C]$, $400[^{\circ}C]$, $480[^{\circ}C]$ at the environmental temperatures of $-5[^{\circ}C]$ and $25[^{\circ}C]$, it is examined that the tip temperature is very stable and its error is within ${\pm}1.8[^{\circ}C]$. Second, it is conformed that the temperature fluctuation of the iron due to the soldering is reduced manifestly. When the temperature of iron tip is varied from $200[^{\circ}C]$ to $480[^{\circ}C]$ with 1[g] solder, the temperature errors of the analog iron are measured to be from $6[^{\circ}C]$ to $10[^{\circ}C]$. In case of designed digital iron, however, these errors are much smaller and they are from $2[^{\circ}C]$ to $5[^{\circ}C]$.

  • PDF