• 제목/요약/키워드: Micro-sensor

검색결과 990건 처리시간 0.03초

Bio-MEMS분야의 최근 연구동향 (Recent research trends on Bio-MEMS)

  • 박세광;양주란
    • 센서학회지
    • /
    • 제19권4호
    • /
    • pp.259-270
    • /
    • 2010
  • MEMS(micro electro mechanical systems) is a technology for the manufacture hyperfine structure, as a micro-sensor and a driving device, by a variety of materials such as silicon and polymer. Many study for utilizing the MEMS applications have been performed in variety of fields, such as light devices, high frequency equipments, bio-technology, energy applications and other applications. Especially, the field of Bio-MEMS related with bio-technology is very attractive, because it have the potential technology for the miniaturization of the medical diagnosis system. Bio-MEMS, the compound word formed from the words 'Bio-technology' and 'MEMS', is hyperfine devices to analyze biological signals in vitro or in vivo. It is extending the range of its application area, by combination with nano-technology(NT), Information Technology(IT). The LOC(lab-on-a-chip) in Bio-MEMS, the comprehensive measurement system combined with Micro fluidic systems, bio-sensors and bio-materials, is the representative technology for the miniaturization of the medical diagnosis system. Therefore, many researchers around the world are performing research on this area. In this paper, the application, development and market trends of Bio-MEMS are investigated.

CMOS 공정을 이용한 마이크로 센서의 설계 및 제작 (Design and Fabrication of Micro-sensors Using CMOS Technology)

  • 이성필;이지공;장중원;김주남;이용재;양흥열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.347-348
    • /
    • 2007
  • On-chip micro humidity sensor, using $CN_x$ films for the sensing material, was designed, simulated, and fabricated with Op amp based readout circuit and diode temperature sensors. To compensate the temperature and other gases, two methods were applied. One is wheatstone-bridge with reference FET that eliminates other undesirable chemical species, and the other is a diode temperature sensor to compensate the temperature effect. $CN_x$ film can be a new humidity sensing material, and has a strong potential to adapt to smart sensors or multi-sensors using MEMS or nano-technology. A particular design technology for integration of sensors and systems together was proposed that whole fabrication process could be achieved by a standard CMOS process.

  • PDF

CO 가스측정을 위한 마이크로 캔틸레버 센서의 최적화 설계 (Optimum Design of Micro-Cantilever Sensor for measuring CO gas)

  • 손희주;나대석;백경갑;박배호;권광호;남산;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.412-413
    • /
    • 2005
  • This paper describes resonant frequency of the structural behavior of micro-cantilever beam simulated by FEM (Finite Element Method). The resonant characteristics and the sensitivity of cantilever-shaped SOI resonant were measured for the application of chemical sensor. The resonant frequency of the fabricated micro-cantilever system was found to be 5.59kHz when the size of cantilever is $500{\mu}m$ long, $100{\mu}m$ wide and $1{\mu}m$ thick. Generation of resonant frequency measured by Modal Analysis is resulted in length of cantilever. The length was found to be a dominant factor for the selection of required resonant frequency range. On the other side, the width had influenced very little on either the magnitude of resonant frequency or the sensitivity.

  • PDF

BCB 평탄화를 활용한 마이크로 기둥 구조물 위의 인듐 범프 형성 공정 (Formation of Indium Bumps on Micro-pillar Structures through BCB Planarization)

  • 박민수
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.57-61
    • /
    • 2021
  • 마이크로 기둥 구조물 위에 인듐 범프 배열을 형성하는 공정을 제안한다. Benzocyclobutene (BCB) 평탄화와 etch-back 공정을 통하여 매우 협소한 마이크로 기둥 위에 인듐 범프를 형성할 수 있는 공간을 확보할 수 있다. 본 연구에서는 단파장 적외선을 감지용 320×256 포맷의 하이브리드 카메라 센서 제조에 대한 자세한 공정 과정을 소개한다. 다양한 공정을 거친 BCB 필름의 shear strength는 quartz crystal microbalance 방법으로 측정하여 추출하였다. BCB 필름의 shear strength는 인듐 범프보다 103배 더 높은 것으로 확인하였다. 제작된 SWIR 카메라 센서로부터 측정된 암전류의 분포는 제안한 인듐 범프 형성 공정이 매우 민감한 적외선 카메라 센서를 구현하는 데 유용할 수 있음을 제시한다.

초미세 위치결정시스템을 이용한 실리콘 웨이퍼의 파괴거동에 관한 연구 (A Study on the Fracture behavior in Silicon Wafer using the Ultra-Precision Micro Positioning System)

  • 이병룡
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.38-44
    • /
    • 2000
  • The background of this study lies in he investigation of the formation mechanism of ductile mode(nkanometer-size) chips of brittle materials such as fine ceramics glass and silicon. As the first step to achieve this purpose this paper intends to observe the micro-deformation behavior of these materials in sub${\mu}{\textrm}{m}$ depth indentation tests using a diamond indentor. In this study it was developed Ultra-Micro Indentation. Device using the PZT actuator. Experimentally by using the Ultra-Micro Indentation device the micro fracture behavior of the silicon wafer was investigated. It was possible that ductile-brittle transition point in ultimate surface of brittle material can be detected by adding an acoustic emission sensor system to the Ultra-Micro Indentation appartus.

  • PDF

박막 공정을 이용한 초소형 내시경의 MicroWiring System의 개발 (The Development of Micro Wiring System for Micro Active Endoscope)

  • 정석;장준근;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.362-365
    • /
    • 1997
  • In the field of Micro-Mechanics, it has been known diffcult to integrate the micro-machine with sensor and source line for the conventional copper line cnanot be used in compact and small size. We developed a system to make thethin copper film as a connect line on the poyurethane pipe (2mm in diameter) by the evaporation technique. This system consists of an evaporation chamber two long branches, substrate hoider and a Linear-Rotary motion feed feedthrough. The results showed that thin copper film coated polyurethanc pipe could be applied th the small medical devices such as the micro active endoscope.

  • PDF

산업전기 설비의 상태 감시를 위한 자가 발전 센서 시스템의 설계 (Design of Self-Powered Sensor System for Condition Monitoring of Industrial Electric Facilities)

  • 이기창;강동식;전정우;황돈하;이주훈;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.264-266
    • /
    • 2005
  • Recently, on-line diagnosis methods through wired and wireless networks are widely adopted in the diagnosis of industrial Electric Facilities, such as generators, transformers and motors. Also smart sensors which includes sensors, signal conditioning circuits and micro-controller in one board are widely studied in the field of condition monitoring. This paper suggests an self-powered system suitable for condition-monitoring smart sensors, which uses parasitic vibrations of the facilities as energy source. First, vibration-driven noise patterns of the electric facilities are presented. And then, an electromagnetic generator which uses mechanical mass-spring vibration resonance are suggested and designed. Finally energy consumption of the presented smart sensor, which consists of MEMS vibration sensors, signal conditioning circuits, a low-power consumption micro-controller, and a ZIGBEE wireless tranceiver, are presented. The usefulness and limits of the presented electromagnetic generators in the field of electric facility monitoring are also suggested.

  • PDF

전기방사를 이용한 TiO2/PVP/LiCl 나노섬유 습도 센서의 제작과 평가 (Evaluation of Electrospun TiO2/PVP/LiCl Nanofiber Array for Humidity Sensing)

  • 유효봉;김범주;권혁진;허준성;임근배
    • 센서학회지
    • /
    • 제23권1호
    • /
    • pp.42-45
    • /
    • 2014
  • Recently, tremendous application utilizing electrospun nanofibers have been actively reported due to its several advantages, such as high surface to volume ratio, simple fabrication and high-throughput manufacturing. In this paper, we developed highly sensitive and consistent nanofiber humidity sensor by electrospinning. The humidity sensor was fabricated by rapid electrospinning (~2 sec) $TiO_2$/PVP/LiCl mixed solution on the micro-interdigitated electrode. In order to evaluate the humidity sensing performances, we measured current response using DC bias voltage under various relative humidity levels. The results show fast response / recovery time and marginal hysteresis as well as long-term stability. In addition, with the aid of micro-interdigitated electrode, we can reduce a total resistance of the sensor and increase the total reaction area of nanofibers across the electrodes resulting in high sensitivity and enhanced current level. Therefore, we expect that the electrospun nanofiber array for humidity sensor can be feasible and promising for diverse humidity sensing application.

High Sensitivity Micro-fabricated Fluxgate Sensor with a Racetrack Shaped Magnetic Core

  • Choi, Won-Youl;Kim, So-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권3호
    • /
    • pp.110-114
    • /
    • 2005
  • We present a micro fluxgate magnetic sensor having solenoid coils and racetrack shaped magnetic core, which was designed to decrease the .operating power and magnetic flux leakage. Electroplated copper coils of $6\;{\mu}m$ thickness and the core of $3\;{\mu}m$ thickness were separated by benzocyclobutane (BCB) having a high insulation and good planarization characters. Permalloy $(Ni_{0.8}Fe_{0.2})$ as a magnetic core was also electroplated under 2000 gauss to induce the magnetic anisotropy. The core had the high DC effective permeability of $\~1,300$ and coercive field of $\~0.1$ Oe. The fabricated fluxgate sensor had the very small actual size of $3.0\times1.7\;mm^2$. The fluxgate sensor with a racetrack shaped core had the high sensitivity .of $\~350$ V/T at excitation condition of 3 $V_{P-P}$ and 2 MHz square wave. When two fluxgates were perpendicularly aligned in terrestrial field, their two-axis output signals were very useful to commercialize an electronic azimuth compass for the portable navigation system.

MI센서를 이용한 3차원상 자석 위치 추정 기술 (Magnet Location Estimation Technology in 3D Using MI Sensors)

  • 조주혁;김화영
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.232-237
    • /
    • 2023
  • This paper presents a system for estimating the position of a magnet using a magnetic sensor. An algorithm is presented to analyze the waveform and output voltage values of the magnetic field generated at each position when the magnet moves and to estimate the position of the magnet based on the analyzed data. Here, the magnet is sufficiently small to be inserted into a blood vessel and has a micro-magnetic field of hundreds of nanoteslas owing to the small size and shape of the guide wire. In this study, a highly sensitive magneto-impedance (MI) sensor was used to detect these micro-magnetic fields. Nine MI sensors were arranged in a 3×3 configuration to detect a magnetic field that changes according to the position of the magnet through the MI sensor, and the voltage value output was polynomially regressed to specify a position value for each voltage value. The accuracy was confirmed by comparing the actual position value with the estimated position value by expanding it from a 1D straight line to a 3D space. Additionally, we could estimate the position of the magnet within a 3% error.