• Title/Summary/Keyword: Micro-riblet

Search Result 6, Processing Time 0.022 seconds

Fabrication of a Micro-riblet Shark Skin-like Surface using a WEDM Process (와이어 방전가공을 이용한 상어 표피 모사 리블렛 표면 제작)

  • Park, Young Whan;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.201-206
    • /
    • 2016
  • In this study, we attempt to produce a semi-elliptical riblet with a shark skin-like surface using wire electrical discharge machining (WEDM) and micro molding techniques. Our design for the production of the semi-elliptical mold includes an electrode, a winding roller, and a guide on the WEDM system. A replication mold with negative riblets is machined using WEDM, and a shark skin inspired surface with positive riblets is fabricated using a micro molding technique. For a comparison with the original shark skin, a shark skin replica is also produced using the micro molding technique directly from a shark skin template. Droplet contact angles on a flat surface, the shark skin replica, and the epoxy resin-based micro riblet shark skin-like surface are evaluated. The effect of a Teflon coating on the contact angles for the three different surfaces is also investigated. The results show the micro riblet with a shark skin-like surface has a similar contact angle as the shark skin replica, which means that the simplified riblet shark skin surface strongly influences the performance of wettability. This study confirms the effectiveness of using the WEDM method to prepare hydrophobic surfaces with diverse surface patterns.

Drag Reduction of NACA0012 Airfoil with a Flexible Micro-riblet (마이크로 리블렛이 부착된 NACA0012 익형의 항력 감소 연구)

  • Jang Young Gil;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.479-482
    • /
    • 2002
  • Riblets with longitudinal grooves along the streamwise direction have been used as an effective flow control technique for drag reduction. A flexible micro-riblet with v-grooves of peak-to-peak spacing of $300{\mu}m$ was made using a MEMS fabrication process of PDMS replica. The flexible micro-riblet was attached on the whole surface of a NACA0012 airfoil with which grooves are aligned with the streamwise direction. The riblet surface reduces drag coefficient about $7.9{\%}\;at\;U_o=3.3m/s$, however, it increases drag about $8{\%}\;at\;U_o=7.0m/s$, compared with the smooth airfoil without riblets. The near wake has been investigated experimentally far the cases of drag reduction ($U_o\;=\;3.3 m/s$) and drag increase ($U_o\;=\;7 m/s$). Five hundred instantaneous velocity fields were measured for each experimental condition using the cross-correlation PIV velocity field measurement technique. The instantaneous velocity fields were ensemble averaged to get spatial distribution of turbulent statistics such as turbulent kinetic energy. The experimental results were compared with those of a smooth airfoil under the same flow condition. The micro-riblet surface influences the near wake flow structure largely, especially in the region near the body surface

  • PDF

Experimental Study on Slip Flows in Superhydrophobic Microchannel (초소수성 마이크로 채널 내 슬립 유동의 실험적 측정)

  • Kim, Ji-Hoon;Byun, Do-Young;Ko, Han-Seo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.84-87
    • /
    • 2007
  • Recently, many studies concern on the slip flow and slip length, which allow liquid flow to reduce drag force in microchannel. However, until now not enough investigation is performed experimentally to understand the slip flow in the superhydrophobic microchannel exhibiting riblet structures on vertical wall. Here we investigated and compared the slip flows according to the surface characteristics; hydrophilic, hydrophobic, and superhydrophobic wettabilities. Using the micro-PIV, velocity profiles can be obtained in the glass (hydrophilic), PDMS (hydrophobic), and micro-structured PDMS (superhydrophobic) microchannels. For both PDMS and superhydrophobic PDMS microchannels, we observed the slip effects showing the microscale slip lengths. Due to the micro-riblet, there are two distinctive flow characteristics on the riblet surface and the liquid meniscus in the valleys.

  • PDF

Experimental Study on Turbulent Structure of Flow over a Micro Riblet Plate (미세 Riblet 평판에서의 난류구조 변화에 관한 실험적 연구)

  • Choi, Yong-Seok;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.375-376
    • /
    • 2006
  • Turbulent structure of a boundary-layer over a flat plate coated with micro riblet film(MRF) has been investigated experimentally. The turbulent structure was visualized using a dynamic particle image velocimetry (Dynamic PIV) system. We identified the vortex structures from 2-D velocity field data by applying the complex eigenvalue definition. The velocity field images acquired by using the complex eigenvalue definition showed the whole 2-D vortex structures clearly. In addition, the spatial distributions of small-scale vortices as well as large-scale vortices were obtained with high accuracy. The difference of vortex structures between the MRF coated flat plate and the smooth flat plate was analysed in detail. With varying upstream flow speed, the characteristics of vortex structure over the MRF coated flate plate was compared with those over the smooth flat plate.

  • PDF

Spatial Distributions of Spanwise Vortices in a Turbulent Boundary Layer over a Micro-riblet Film (미세 리블렛 평판 상부 난류경계층 유동에서 횡방향 와의 공간적 분포특성)

  • Choi, Yong-Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2660-2665
    • /
    • 2007
  • Turbulent boundary-layer over a micro-riblet film(MRF) was investigated experimentally. The MRF has sharp V-shaped micro scale grooves of $300{\mu}m$ in width and $176.8{\mu}m$ in height. Particle image velocimetry(PIV) system was employed to measure velocity fields of flow over the MRF coated plate. Flow over a smooth plate was also measured for comparison. The PIV measurements were taken in the streamwise wall-normal planes at Re$\theta$= 985 and 2342. Vortex structures of the flow were analyzed by extracting the swirling strength as an unambiguous vortex-identification criterion. As a result the number of spanwise vortices with clockwise(negative) rotation decreases rapidly in the near-wall region(y<0.2h), but decreases slowly in the outer region(0.2h

  • PDF

Fabrication of a Micro-Riblet Film Using MEMS Technology and Its Application to Drag Reduction (MEMS 기술을 이용한 미소 리블렛 필름 제작 및 항력 감소에의 응용)

  • Han, Man-Hee;Huh, Jeong-Ki;Lee, Sang-Joon;Lee, Seung-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.991-996
    • /
    • 2002
  • This paper presents the fabrication method of a micro-riblet film (MRF) using MEMS technology and the experimental results of the drag reduction of an airfoil with MRFs. Riblets having grooved surface in the streamwise direction has been proven as an effective passive control technique of the drag reduction. A V-grooved pattern on (100) silicon wafer is etched with anisotropic bulk micromachining. The MRF is completed by replicating the V-grooved pattern with polydimethylsiloxane (PDMS). Experiments were performed by measuring a velocity field behind the trailing edge of a NACA 0012 airfoil with and without MRFs in a closed-type subsonic wind tunnel using particle image velocimetry (PlV) technique. The MRF provides about 3.8 % drag reduction compared to the drag on a smooth airfoil when the freestream velocity of wind tunnel is 3.3 m/s.