• 제목/요약/키워드: Micro-pocket

검색결과 14건 처리시간 0.025초

2차원 미세 포켓이 있는 무한장 Slider Bearing의 CFD 해석 (CFD Analysis of an Infinitely Long Slider Bearing with Two-Dimensional micro-Pockets)

  • 박태조;황윤건;손자덕;정호경
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.43-48
    • /
    • 2009
  • It is reported by many researchers that the textured bearing surfaces, where many tiny micro-pockets or enclosed recesses were incorporated, can enhance the load support and reduce friction force. Recently, the basic lubrication mechanism of micro-pocketed parallel surfaces are explained in terms of "inlet suction" using continuity equation and simply cavitation condition. However, it is required that more actual cavitation condition in the pocket region should be applied to estimate exact bearing performance. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the exact lubrication characteristics of infinitely long slider bearing with micro-pockets. The results show that the pressure distributions are highly affected by pocket depths, its positions and numbers. The numerical method adopted in this paper and results can be use in optimal design of textured sliding bearings.

Powder Blasting에 의한 미세 포켓의 기계적 에칭 (Mechanical Etching of Micro Pocket by Powder Blasting)

  • 박경호;오영탁;박동삼
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.219-226
    • /
    • 2002
  • The mechanical etching technique has recently been developed to a powder blasting technique for various materials, capable of producing micro structures larger than 100$\mu$ m. This paper describes the performance of powder blasting technique in micro-pocketing of stainless steel and the effect of the number of nozzle scanning and the nozzle height on the depth and width of pockets. Experimental results showed that increasing the no. of nozzle scanning and decreasing the nozzle height resulted in the increase of depth and width in pockets. Increase of width results from wear of mask film.

Micro-EDM 공정을 이용한 미세 형상 가공 (Machining of Micro-scale Shapes using Micro-EDM Process)

  • 김영태;박성준;이상조
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.109-117
    • /
    • 2003
  • With development of high advanced technologies and skills, micro machining techniques also are being more functional and smaller. Some of the recently developed micro machining technologies are micro drilling, micro EDM, WEDG, LBM, micro milling, micro UVM etc. In these micro machining techniques, Micro -EDM is generally used for machining micro holes, pockets, and micro structures in difficult-cut-materials. For machining micro structures, first of all, tool electrode should be fabricated by WEDG process. In micro-EDM, parameters such as peak current, pulse width, duration time are very important to fabricate the tool electrode and micro structures. Developed experimental equipments are composed of RLC circuit with PWM. In this paper, using developed micro EDM machine, the characteristics of micro electro discharge machining are investigated at micro holes, slot, and pocket machining etc. Also the trends of tool wear are investigated in case of hole and slot machining.

Powder Blasting을 이용한 미세 포켓가공 (Micromachining of Pocket by Powder Blasting)

  • 박경호;최종순;김광현;박동삼
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1060-1063
    • /
    • 2001
  • The mechanical etching technique has recently been developed to a powder blasting technique for various materials, capable of producing micro structures larger than 100$\mu$m. This paper describes the performance of powder blasting technique in micro-pocketing of stainless steel and the effect of the number of nozzle scanning and the nozzle height on the depth and width of pockets. Experimental results showed that increasing the no. of nozzle scanning and decreasing the nozzle height resulted in the increase of depth and width in pockets. Increase of width results from wear of mask film.

  • PDF

RE-EV용 엔진 발전기의 구동 부품의 마찰력 저감에 관한 연구 (A Study on Friction Force Reduction of Moving Parts of Engine Generator for Range Extended Electric Vehicle)

  • 나완용
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.160-164
    • /
    • 2014
  • Recently, there has been an active study about friction force of moving parts for automotive. This study is development and evaluation of oil pockets for journal bearing and tappet valve for range extended electric vehicle. Specially, oil pockets are effect on friction force depend on pitch, size, depth. In this study, fine oil pocket was formed using by etched texturing on the journal bearing and tappet valve. And oil pocket analyzed by SEM and friction force test was carried out by tensile tester. Finally, in this study, it was suggested by round and plane part which journal besring and tappet valve.

마이크로 성형에서 마찰거동의 크기효과에 대한 이론적 및 실험적 연구 (A Theoretical and Experimental Study on the Tribological Size Effect in Microforming Processes)

  • 김홍석
    • 소성∙가공
    • /
    • 제22권7호
    • /
    • pp.394-400
    • /
    • 2013
  • Microforming is a very efficient and economical technology to fabricate very small metallic parts in various applications. In order to extend the use of this forming technology for the production of microparts, the size effect, which occurs with the reduction of part size and affects the forming process significantly, must be thoroughly investigated. In this study, the tribological size effect in microforming was studied using modeling and scaled ring compression experiments. A micro-scale friction approach based on the slip-line field theory and lubricant pocket model was used to understand the friction mechanism and explain the tribological size effect. Ring compression tests were performed to analyze the interfacial friction condition from the deformation characteristics of the ring specimens. In addition, finite element analysis results were utilized to quantitatively determine the size-dependent frictional behavior of materials in various process conditions. By comparing theoretical results and experimental measurements for different size factors, the accuracy and reliability of the model were verified.

집속이온빔을 이용한 미세구조물 가공의 형상정밀도 향상 (A New Approach to Reduce Geometric Error in FIB Fabrication of Micro Structures)

  • 김경석;정재원;민병권;이상조;박철우;이종항
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1186-1189
    • /
    • 2005
  • Focused Ion Beam machining is an attractive approach to produce nano-scale 3D structures. However, like other beam-based manufacturing processes, the redeposition of the sputtered material during the machining deteriorates the geometric accuracy of ion beam machining. In this research a new approach to reduce the geometric error in FIB machining is introduced. The observed redeposition phenomena have been compared with existing theoretical model. Although the redeposition effect has good repeatability the prediction of exact amount of geometric error in ion beam machining is difficult. Therefore, proposed method utilizes process control approach. Developed algorithm measures the redeposition amount after every production cycle and modifies next process plan. The method has been implemented to a real FIB machine and the experimental results demonstrated considerable improvement of five micrometer-sized pocket machining.

  • PDF

실리콘 웨이퍼 습식 식각장치 설계 및 공정개발 (Design of Single-wafer Wet Etching Bath for Silicon Wafer Etching)

  • 김재환;이용일;홍상진
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.77-81
    • /
    • 2020
  • Silicon wafer etching in micro electro mechanical systems (MEMS) fabrication is challenging to form 3-D structures. Well known Si-wet etch of silicon employs potassium hydroxide (KOH), tetramethylammonium hydroxide (TMAH) and sodium hydroxide (NaOH). However, the existing silicon wet etching process has a fatal disadvantage that etching of the back side of the wafer is hard to avoid. In this study, a wet etching bath for 150 mm wafers was designed to prevent back-side etching of silicon wafer, and we demonstrated the optimized process recipe to have anisotropic wet etching of silicon wafer without any damage on the backside. We also presented the design of wet bath for 300 mm wafer processing as a promising process development.