• Title/Summary/Keyword: Micro-mirror

Search Result 141, Processing Time 0.028 seconds

Fabrication of Large Area Silicon Mirror for Integrated Optical Pickup (집적형 광 픽업용 대면적 실리콘 미러 제작)

  • Kim, Hae-Sung;Lee, Myung-Bok;Sohn, Jin-Seung;Suh, Sung-Dong;Cho, Eun-Hyoung
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.182-187
    • /
    • 2005
  • A large area micro mirror is an optical element that functions as changing an optical path by reflection in integrated optical system. We fabricated the large area silicon mirror by anisotropic etching using MEMS for implementation of integrated optical pickup. In this work, we report the optimum conditions to better fabricate and design, greatly improve mirror surface quality. To obtain mirror surface of $45^{\circ},\;9.74^{\circ}$ off-axis silicon wafer from (100) plane was used in etching condition of $80^{\circ}C$ with 40wt.% KOH solution. After wet etching, polishing process by MR fluid was applied to mirror surface for reduction of roughness. In the next step, after polymer coating on the polished Si wafer, the Si mirror was fabricated by UV curing using a trapezoid bar-type way structure. Finally, we obtained peak to valley roughness about 50 nm in large area of $mm^2$ and it is applicable to optical pickup using blu-ray wavelength as well as infrared wavelength.

  • PDF

Holosymmetric 4-Mirror Optical System(Unit Maginification) for Deep Ultraviolet Lithography Obtained from the Exact Solution of All Zero Third Order Aberrations (모든 3차 수차를 제거하여 얻은 극자외선 Lithography용 4-반사경 Holosymmetric System(배율=1))

  • 조영민
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.252-259
    • /
    • 1993
  • A holosymmetric four-mirror system with unit magnification is designed for use in the micro-lithography using a deep ultraviolet wavelength of $0.248 {\mu}m$(KrF excimer laser line). In the holosymmetric system all orders of coma and distortion are zero. By applying this principle to the 4-spherical mirror system, we have obtained only one exact solution for the unit magnification holosymmetric four-spherical mirror system with all zero third order aberrations. For correction of the residual higher order aberrations of the system, aspherization is introduced keeping the holosymmetric properties. We have obtained near diffraction-limited performance for the wavelength of 0.248 pm within N.A. of 0.33 and image field diameter of 7.6 mm.

  • PDF

Diamond micro-cutting of the difficult -to -cut materials using Electrolysis (전기분해를 이용한 난삭재의 다이아몬드 미세가공)

  • 손성민;손민기;임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.951-954
    • /
    • 2000
  • This paper presents a new cutting method, i.e. diamond cutting, aided by electrolysis, in order to cut ferrous materials with diamond tools. Diamond cutting is widely applied in manufacturing ultraprecision parts such as magnetic disk, polygon mirror, spherical/non-spherical mirror and copier drum, etc. because of the diamond tool edge sharpness. In general, however, diamond cutting cannot be applied to cutting steels, because diamond tools wear excessively in cutting iron based materials like steel due to their high chemical interaction with iron in high temperature. In order to suppress the diffusion of carbon from the diamond tool and to reduce increase of cutting force due to size effect, we attempt to change chemically the compositions of iron based materials using electrolysis in a limited part which will be soon cut. Through experiments under several micro-machining and electrolysis conditions, cutting using electrolysis, compared to conventional cutting, was found to result in a great decrease of the cutting force, a better surface and much less wear tool.

  • PDF

Four Spherical Mirror Stepper Optics for Deep UV Micro-Lithography (Deep UV 마이크로 리소그라피용 Stepper를 위한 4구면 반사경계)

  • 조영민;이상수;박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.186-192
    • /
    • 1991
  • For the micro-lithography using a excimer laser beam $(\lambda\leq0.248$\mu\textrm{m})$. a mirror system consisting of four spherical surfaces with reductlon magnification 5X is designed. Initially the aplanat, flat field and the distortion free condition of the system are analytically investigated within Seidel 3rd order aberrations. And the computer-aided optimization technique has been employed for the further improved performance of the system. The final system has N.A. of 0.15 and image field diameter 3.3 mm, and has the diffraction-limited performance for KrF eximer laser beam.

  • PDF

Study on the new development of combined electrochemical processes using pulse current (마이크로 펄스 전해 복합가공에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.918-921
    • /
    • 2002
  • Some investigators who have tried to achieve the highly smooth surface finish using electrochemical processes have reported that high current density produced lustrous surfaces while the opposite conditions produced a passive layer and had a tendency to produce a black surface. However, processing at a low current density may produce a non-lustrous surface but the improvement of dimensional accuracy of the surface is significant. The surface with pulse process was a bit more lustrous than with continuous current but the black passive layer still could be found at grooved surface. There are two ways to achieve highly smooth surface finish. One is brushing it with a brush the other is electrochemical machining (ECM) with high current. The former method is the most common polishing practice, but not only may the surface obtained differ from operator to operator, but precision smooth surface on micro grooves are difficult to obtain. The latter one recently has been used to produce a highly smooth surface after EDM process. However, the material removal rate in ECM with high current is relatively high. Hence the original shape of the micro grooves, which was formed by electrochemical micro-machining (EMM) process, may be destroyed. In this study, an electrochemical polishing process using pulse current is adopted as a possible alternative process when micro grooves formed by EMM process should be polished. Mirror-like micro grooves with lustrous and smooth surface can be produced electrochemically with pulse current because the voltage and current used can be lower than the case of continuous current. This study will discuss the accurate control of physical and electrical conditions so as to achieve mirror-like micro grooves with lustrous and smooth surface without destroying the original shape of micro grooves.

  • PDF

Fabrication and characteristics of electrostatic micro mirror for optical disk drives (광 저장장치 응용을 위한 마이크로 미러의 제작과 그 특성)

  • Kim, Jong-Wan;Seo, Hwa-Il;Lee, Woo-Young;Rim, Kyung-Hwa;Jang, Young-Jo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • Optical disk drives read information by replacing a laser beam on the disk track. As information has become larger, the more accurate position control of a laser beam is necessary. In this paper, we report the analysis and fabrication of the micro mirror for optical disk drivers. The mirror was fabricated by using MEMS technology. Especially, the Process using the lapping and polishing step after the bonding of the mirror and electrode plates was employed for the process reliability. The mirror size was $2.5mm{\times}3mm$ and it needed about 35V for displacement of $3.2{\mu}m$.

Characteristic of Mirror Surface ELID Grinding of Large Scale Diametrical Silicon Wafer with Rotary Type Grinding Machine (로타리 연삭에 의한 대직경 Si-wafer의 ELID 경면 연삭특성)

  • 박창수;김원일;왕덕현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.58-64
    • /
    • 2002
  • Mirror surface finish of Si-wafers has been achieved by rotary in-feed machining with cup-type wheels in ELID grinding. But the diameter of the workpiece is limited with the diameter of the grinding wheel in the in-feed machining method. In this study, some finding experiments by the rotary surface grinding machine with straight type wheels were conducted, by which the possible grinding area of the workpiece is independent of the diameter of the wheels. For the purpose of investigating the grinding characteristics of large scale diametrical silicon wafer, grinding conditions such as rotation speed of grinding wheels and revolution of workpieces are varied, and grinding machine used in this experiment is rotary type surface grinding m/c equipment with an ELID unit. The surface ground using the SD8000 wheels showed that mirror like surface roughness can be attained near 2~6 nm in Ra.

Design and fabrication of a micromirror using silicon bulk micromachining for out-of-plane right angle reflection (기판으로부터 수직 반사를 위한 실리콘 마이크로 미러의 설계와 제작)

  • Jang, Yun-Ho;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1985-1987
    • /
    • 2002
  • Silicon bulk micromachined micromirrors are designed and fabricated for out-of-plane right angle reflection. The micromirror is comprised of a minor plate, springs, magnetic bars and electrodes. Single crystalline silicon is used for a flatness improvement of a mirror plate. Out-of-plane right angle reflection requires a 45 degree operation of the micromirror. The micromirrors are operated by applying a magnetic field, which is generated by a coil located below a substrate. For an individual mirror operation, each mirror is clamped using an electrostatic force against the electromagnetic force. Angular deflections are measured and compared with theoretical data. The micro mirror operates up to 45 degree when magnetic field is 4 kA/m which is generated by a 115 mA coil current Simple addressing is tested, and it is shown that a clamping voltage is less than 5V.

  • PDF

A Nickel Micro Switch Operating in a Wide Range of Torsion Angles

  • Kahng, Seong-Joong;Kim, Jae-Hyeok;Kim, Young-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.263-266
    • /
    • 2007
  • We report a nickel optical MEMS switch, being able to rotate through a large angle and to accommodate multiple channels. The proposed optical switch consists of a thin nickel mirror and two torsion springs supporting the mirror. The torsion springs are designed using a finite element method (FEM) such that plastic deformation of the thin nickel is avoided during the large torsion actuation. For switching speed improvement, transient vibration of the released mirror is suppressed by optimizing the mirror design and a fast switching response of $200\;{\mu}s\;(pull-down)/300\;{\mu}s\;(pull-up)$ is demonstrated.