• 제목/요약/키워드: Micro-hole array

검색결과 15건 처리시간 0.021초

압전구동기를 이용한 정밀 가공용 초음파 진동장치 설계 (Design of Ultrasonic Vibration Device using PZT Actuator for Precision Laser Machining)

  • 김우진;;조성학;박종권;이문구
    • 한국레이저가공학회지
    • /
    • 제14권2호
    • /
    • pp.8-12
    • /
    • 2011
  • As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in micro hole array on the surface of the stent, the problem can be solved. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have an enough aspect ratio to contain the drug or a good surface finish to deliver it to blood vessel tissue. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20kHz and amplitude over 500nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT also is selected to have high actuating force and high speed of motion. The support has symmetrical and rigid characteristics.

  • PDF

MEMS 소자의 비아 홀에 대한 레이저 공정변수의 최적화 (Optimization of Laser Process Parameters for Realizing Optimal Via Holes for MEMS Devices)

  • 박시범;이철재;권희준;전찬봉;강정호
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1765-1771
    • /
    • 2010
  • MEMS 소자의 공정에서 가공된 비아 홀 품질은 소자의 성능에 가장 중요한 요소의 하나이다. Nd:$YVO_4$ 레이저로 가공한 비아 홀에 대한 레이저 미세가공의 일반적인 특징을 설명하고 그것의 측정에 대한 효율적인 최적화 방법을 소개한다. 본 논문의 최적화 방법은 직교다항식, 분산분석과 반응표면최적화는 최적 레이저 공정변수를 결정하고 주요 영향을 이해하는데 사용된다. 유의한 레이저 공정변수를 확인하고 이의 비아 홀 품질에 관한 영향을 고찰하였다. 레이저 공정변수의 최적 수준을 가지는 확인 실험은 최적화 방법의 유효성을 설명하기 위해 수행하였다.

Wire bonding 자동 전단력 검사를 위한 wire의 3차원 위치 측정 시스템 개발 (3D Measurement System of Wire for Automatic Pull Test of Wire Bonding)

  • 고국원;김동현;이지연;이상준
    • 제어로봇시스템학회논문지
    • /
    • 제21권12호
    • /
    • pp.1130-1135
    • /
    • 2015
  • The bond pull test is the most widely used technique for the evaluation and control of wire bond quality. The wire being tested is pulled upward until the wire or bond to the die or substrate breaks. The inspector test strength of wire by manually and it takes around 3 minutes to perform the test. In this paper, we develop a 3D vision system to measure 3D position of wire. It gives 3D position data of wire to move a hook into wires. The 3D measurement method to use here is a confocal imaging system. The conventional confocal imaging system is a spot scanning method which has a high resolution and good illumination efficiency. However, a conventional confocal systems has a disadvantage to perform XY axis scanning in order to achieve 3D data in given FOV (Field of View) through spot scanning. We propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array to remove XY scan. 2D imaging system can detect 2D location of wire and it can reduce time to measure 3D position of wire. In the experimental results, the proposed system can measure 3D position of wire with reasonable accuracy.

Investigations on the Magneto-optical Properties of Bilayered Co/Ni Micro-patterned Anti-dot Arrays

  • Deshpande, N.G.;Zheng, H.Y.;Hwang, J.S.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.251-251
    • /
    • 2012
  • A lot of studies are undergoing on the magneto-optical (MO) properties of patterned magnetic systems for the reason that they have potential application to information technology such as ultrahigh-speed computing. Moreover, they can be considered as the future candidates for high-density MO storage devices. Not only the technical aspects, but there have been also tremendous interests in studying their properties related to the fundamental physics. The MO Kerr-rotation effects (both in reflected and the diffracted modes) and the magnetic force microscopy (MFM) are very useful techniques to investigate the micromagnetic properties of such periodic structures. Hence, in this study, we report on the MO properties of bilayered Cobalt (Co)/ nickel (Ni) micro-patterned anti-dot arrays. Such a ferromagnetic structure was made by sequentially depositing co (40 nm)/Ni (5 nm) bilayer on a Si substrate. The anti-dot patterning with hole diameter of $1{\mu}m$ was done only on the upper Co layer using photolithography technique, while the Ni underlayer was kept uniform. The longitudinal Kerr rotation (LKR) of the zeroth- and the first-order diffracted beams were measured at an incidence of $30^{\circ}$ by using a photoelastic modulator method. The external magnetic field was applied perpendicularly to the reflected and the diffracted beams using an electromagnet capable of a maximum field of ${\pm}5$ kOe. Significantly, it was observed that the LKR of the first-order diffracted beam is nearly 4 times larger than that of the zeroth-order beam. The simulated results for the hysteresis loops matched qualitatively well with the experimentally obtained ones. In conjunction with the LKR, we also investigated the magnetic-domain structure by using a MFM system, which were analyzed to elucidate the origin of the enhanced MO rotation.

  • PDF

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • 한국세라믹학회지
    • /
    • 제49권5호
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.