• Title/Summary/Keyword: Micro-gas turbine

Search Result 140, Processing Time 0.03 seconds

Performance Test of MGT Combined Heat & Power System (마이크로 가스터빈 열병합 발전시스템 성능평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.313-316
    • /
    • 2006
  • As Decentralized Generation(DG) becomes more reliable and economically feasible, it is expected that a higher application of DG units would be interconnected to the existing grids. This new market penetration of DG technologies is linked to a large number of factors like technologies costs and performances, interconnection issues, safety, market regulations, environmental issues or grid connection constrains. Korea Electric Power Corporation (KEPCO) has researched performance characteristics of the 60k W class 1) basic start-up & shutdown operation analysis 2) interconnection test 3) MGT -absorption chiller-heater system in the local condition. Variations of heat recovery from exhaust gas has measured according to micro gas turbine output of 15, 30, 45, 60kW. From those results, the performance of the MGT-absorption chiller/heater system has been evaluated. The suggested strategy and experience for the evaluation of the distributed generation will be used for the introduction of other distributed generation technologies into the grid in the future.

  • PDF

Performance test of a micro-turbine jet engine (초소형 가스터빈 엔진 성능시험)

  • Shin, Young-Gy;Kim, Jong-Moon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.788-793
    • /
    • 2001
  • Test experience with a micro-turbine jet engine is introduced. The engine provides us with valuable opportunities to experience know-hows essential for engine development. It consists of a single radial compressor and a single stage turbine. Engine starting procedure has been established after many trials and errors. Static and dynamic engine performance tests were conducted. Static performance was found to be inferior to that advertised by the manufacturer. Further improvement is needed. Dynamic performance revealed that engine thrust overshoots unfavorably for the purpose of UAV control.

  • PDF

Effect of the Exhaust Heat from Micro Gas Turbine on the Performance Characteristics of the Absorption Chiller (마이크로가스터빈 배열부하가 배가스흡수식 냉온수기의 성능에 미치는 영향)

  • Choi Kyoung-Shik;Sohn Wha-Seung;Kim HyoungSik;Rhim Sang-Kyu;Hur Kwang-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.158-162
    • /
    • 2006
  • Micro gas turbine (MGT) has received attention recently as a small-scale distributed power source. Due to many advantages such as their small size, low maintenance cost and minimal vibrations during operation, they are expected to become widespread in a wide range of applications. The exhaust heat emitted by the MGT is in the form of an exhaust gas that is about $270^{\circ}C$ which is an extremely clean gas. Korea Gas Corporation (KOGAS) has researched performance characteristics of a cogeneration system combining 28kW class MGT and 13 USRT class absorption hot and chilled water generator in the local condition. The present results of this study can be summarized as follows: (1) in heating mode, the total efficiency of cogen. system is about $65\%$ and heating capacity is 33kW at 25kW MGP power (2) in cooling mode, COP is about 0.6 at 22kW MGT power.

Study on the Performance Optimization of Commercial Metal Hydride Refrigerator Powered by Exhaust Gas from Micro Gas Turbine (마이크로가스터빈의 부하에 따른 상용 수소흡장냉동기의 성능 최적화에 관한 연구)

  • Kim Hyoungsik;Sohn Wha-seung;Choi Kyoung-shik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.824-829
    • /
    • 2005
  • MHR(Metal Hydride Refrigerator) powered by MGT exhaust gas is investigated to find out the optimum conditions corresponding to MGT operating powers. There are many factors to affect cooling capacity of MHR. In this study, the effect of switching time, flow rate of brine on cooling temperature and capacity is investigated. The present results show (1) hydrogen reaction is saturated with 25 min switching time at 25 kW MGT power, (2) cooling power shows maximum phenomenon with increasing switching time, (3) optimum switching times are 20 minutes for 15kW MGT power and 15 minutes for 20, 25kW MGT power, (4) according to increasing brine flow rate, cooling capacity shows decrease at 15 kW MGT power and changes little at above 20 kW MGT power.

Measurement of Micro Gas Turbine Power Pack Performance for Electric Vehicle Range Extenders Under Various Electrical Loads and Gear Ratios (전기자동차 레인지익스텐더를 위한 초소형 가스터빈 파워팩의 전기 부하 및 동력전달 기어비에 따른 성능 실험)

  • Sim, Kyuho;Park, Jisu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Range extenders, which are power generation systems driven by small engines, extend the driving distance and time of electric vehicles (EVs) through continuous charging of batteries. The currently used range extenders with gasoline engines pose limitations with regard to the realization of high-power compact systems, owing to their complex structure and low energy density. In contrast, micro gas turbine (MGT) range extenders (MGT power packs) possess high power and low weight, and can therefore be significantly reduced in size despite increase in speed. In this study, an MGT power pack for the range extenders of EVs was developed using a turbo-prop micro turbine, an alternator for passenger vehicles and electric batteries. The operating characteristics of the MGT power pack were measured through a series of experiments conducted under electrical no-load and load conditions. Their power generation performance and efficiency were measured under various electrical loads and power transmission gear ratios. From the results, electrical load was found to have no influence on power generation performance. The maximum electrical power output was 0.8 kW at a core turbine speed of 150 krpm, and the application of 3:1 reduction gear to the turbine output shaft increased the power to 1.5 kW by 88%. This implies that the test results demonstrated stable power generation performance of the MGT power pack regardless of vehicle load changes, thus revealing its feasibility for use with the range extenders of EVs.

Numerical Study of Hydrogen/Air Combustion in Combustion Chamber of Ultra Micro Gas Turbine by Change of Flow Rate and Equivalence Ratio (공급 유량 및 당량비 변화에 따른 초소형 가스터빈 연소실 내 수소/공기 연소의 수치해석 연구)

  • Kwon, Kilsung;Hwang, Yu Hyeon;Kang, Ho;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.103-109
    • /
    • 2013
  • In this study, we performed a numerical study of hydrogen/air combustion in the combustion chamber of an ultra micro gas turbine. The supply flow rate and equivalence ratio are used as variables, and the commercial computational fluid dynamic program (STAR-CCM) is used for the numerical study of the combustion. The flow rate significantly affects the flame position, flame temperature, and pressure ratio between the inlet and the outlet. The flame position is close to the outlet in the combustion chamber, and the flame temperature and pressure ratio monotonously increases with the supply flow rate. The change in the equivalence ratio does not affect the flame position. The maximum flame temperature occurs under stoichiometric conditions.