• Title/Summary/Keyword: Micro-gas Turbine

Search Result 140, Processing Time 0.02 seconds

Transient Liquid Phase Bonding of Gamma Prime Precipitation Strengthened Ni Based Superalloy (석출강화형 Ni 기 초내열합금의 천이액상확산접합)

  • Kim, Jeong Kil;Park, Hae Ji;Shim, Deog Nam
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.52-61
    • /
    • 2017
  • Transient liquid phase (TLP) bonding is essential technology to repair micro-cracking on the airfoil of blades and vanes for gas turbines. Understanding of the characteristics of TLP bonding of the superalloys is necessary in the application of the technology for repairing these components. In this study, the focus was on investigating TLP bonding characteristics of ${\gamma}^{\prime}$ precipitation strengthened Ni based superalloy. TLP bonding was carried out with an amorphous filler metal in various bonding conditions, and the microstructural characterization was investigated through optical microscopy (OM) and electron probe micro-analysis (EPMA). The experimantal results explained clearly that bonding temperatures had critical effects on the TLP bonding behaviors, and that isothermal solidication of the joints made at higher temperatures than $1170^{\circ}C$ was controlled by Ti diffusion instead of B.

Study on Microstructure and Physical Properties of PUF by the Impeller Type of Agitator (교반기의 임펠러 형태에 따른 폴리우레탄 폼의 미세구조와 물성 연구)

  • Lee, Chae-Rim;Kim, Jung Soo;Park, Byeongho;Um, Moon-Kwang;Park, Teahoon
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • Polyurethane foam (PUF) can be manufactured in soft, semi-rigid, and hard forms, so it is used in various fields industrially. Among them, rigid PUF has excellent mechanical properties and low thermal conductivity, and is used as a thermal insulation material for buildings and as a cold insulation material in the natural gas transportation field. In this field, there is a steady demand on higher mechanical strength and lower thermal conductivity. In this study, a rigid PUF was manufactured, and the microstructure and physical properties were studied according to the impeller type (propeller, dispersed turbine) of the agitator. Through FE-SEM and Micro-CT analysis, it was confirmed that the average pore size of the foam manufactured with the dispersed turbine was 21.5% smaller than that of the pore made by the propeller. The compressive strength was improved by 15.4%, and the thermal conductivity decreased by 3.1% in the foam with small pores. This result can be utilized for fabricating PUF composites.

Spray Visualization of the Gas Turbine Vaporizer (가스터빈 기화기의 분무 가시화 연구)

  • Jo, Sungpil;Joo, Milee;Choi, Seongman;Rhee, Dongho
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.130-136
    • /
    • 2019
  • Spray visualization of a vaporizer fuel injection system of a micro turbo jet engine was experimentally studied. The fuel heating by combustion was simulated by the high pressure steam generator and combustor inlet air from the centrifugal compressor was simulated by compressed air stored in the high pressure air tank. Spray visualization was performed with single vaporizer, and then six vaporizers which are same number of micro turbojet engine were used. As a results, the spray characteristics of the vaporizer were understood with pressure difference of the combustor inlet air and the fuel supply pressure. Spray angles with three types of vaporizer configuration were measured. In the results, guide vane configuration has a wider spray angle than the straight tube and smooth curve tube with a swirler, so it is expected that the fuel will be effectively distributed inside the combustor flame tube.

A Study of Inverse Modeling from Micro Gas Turbine Experimental Test Data (소형 가스터빈 엔진 실험 데이터를 이용한 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong;Koo, Young-Ju;Kim, Keon-Woo;Oh, Seong-Hwan;Kim, Ji-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.537-541
    • /
    • 2009
  • The gas turbine engine performance is greatly relied on its component performance characteristics. Generally, acquisition of component maps is not easy for engine purchasers because it is an expensive intellectual property of gas turbine engine supplier. In the previous work, the maps were inversely generated from engine performance deck data, but this method is limited to obtain the realistic maps due to calculated performance deck data. Therefore this work proposes newly to generate more realistic compressor map from experimental performance test data. And then a realistic compressor map can be generated form those processed data using the proposed extended scaling method at each rotational speed. Evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and on-condition monitoring performance data.

  • PDF

AC and DC Applications of Induction Generator Excited by Static VAR Compensator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.169-179
    • /
    • 2004
  • This paper presents the steady-state analysis of the three-phase self-excited induction generator (SEIG). The three-phase SEIG with a squirrel cage rotor is driven by a variable-speed prime mover (VSPM) or a constant-speed prime mover (CSPM) such as a wind turbine or a micro gas turbine. Furthermore, a PI closed-loop feedback voltage regulation scheme of the three-phase SEIG driven by a VSPM on the basis of the static VAR compensator (SVC) is designed and evaluated for the stand-alone AC and DC power applications. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of its fast responses and high performances

Evaluation of Effect on Thermal Fatigue Life Considering TGO Growth (TGO 성장이 열피로 수명에 미치는 영향 평가)

  • Song, Hyunwoo;Lee, Jeong-Min;Kim, Yongseok;Oh, Chang-Seo;Han, Kyu Chul;Lee, Young-Ze;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1155-1159
    • /
    • 2014
  • Thermal barrier coating (TBC) which is used to protect the substrate of gas turbine is exposed to high temperature environment. Because of high temperature environment, thermally grown oxide (TGO) is grown at the interface of thermal barrier coating in operation of gas turbine. The growth of TGO critically affects to durability of TBC, so the evaluation about durability of TBC with TGOs of various thickness is needed. In this research, TGO was inserted by aging of TBC specimen to evaluate the effect of the TGO growth. Then thickness of TGO was defined by microstructure analysis, and thermal fatigue test was performed with these aging specimens. Finally, the relation between thermal fatigue life and the TGO growth according to aging time was obtained.

Development of the Performance Test Cell Using the Small Gas Turbine Engine of 80 lbf-Thrust (80lbf급 소형 가스터빈 엔진의 성능 시험장치 개발)

  • Jin, Hak-Su;Kho, Seong-Hee;Ki, Ja-Young;Yong, Seong-Ju;Kang, Myoung-Cheol;Lee, Eun-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.495-498
    • /
    • 2010
  • This test cell is developed to the institutes or laboratories research and study gas turbine engine for academic purpose with this test data to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation The test cell is installed to monitor and compare real-time data with reference engine model performance simulation data. using by NI DAQ(Data acquisition)device and LabVIEW program based on 80 lbf-micro turbojet engine.

  • PDF

Micro Gas Turbine Performance using Catalytic Cracked Ethanol as Fuel (촉매 분해 에탄올을 연료로 사용하는 마이크로 가스터빈의 성능)

  • Choi, Songyi;Koo, Jaye;Yoon, Youngbin
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • In order to verify the possiblity of improving the combustion performance of ethanol using zeolite catalyst and the characteristics of nitrogen oxides and carbon monoxide emission, micro gas turbine experiments were performed using catalytic reaction products, ethanol and kerosene as fuels and the results were compared. The thrust of the catalytic reaction product was lower than that of kerosene, but it was improved by 5% on average compared with the use of ethanol. Nitrogen oxides and carbon monoxide emissions of the catalytic reaction products were measured to be very low overall compared to kerosene. As a result, when the ethanol was reformed using the zeolite catalyst, the engine performance could be improved while maintaining the environment friendliness of the ethanol.

Development of Hybrid/Dual Jet Combustor for a MGT (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part I: 형상 최적화를 위한 실험연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.60-69
    • /
    • 2013
  • An optimum configuration of the hybrid/dual swirl jet combustor for a micro-gas turbine was investigated experimentally. Location of pilot nozzle, angle and direction of swirler vane were varied systematically as main parameters under the conditions of constant thermal load. The results showed that the variation in locations of inner fuel nozzle and pilot burner resulted in significant change in flame shape and swirl intensity due to the changes in recirculating flow pattern and minimum flow area near burner exit, in particular, with the significant reduction of CO emission near lean-flammability limit. In addition, it was observed that the co-swirl configuration produced less CO and NOx emissions compared to the counter-swirl configuration.

Development of Hybrid/Dual Swirl Jet Combustor for a MGT (Part II: Numerical Study on Isothermal Flow) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part II: 비반응 유동에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-79
    • /
    • 2013
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine (MGT) were numerically investigated. Location of pilot burner, swirl angle and direction were varied as main parameters with the identical thermal load. As a result, the variations in location of pilot nozzle, swirl angle and direction resulted in the significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus the flame stability and emission performance might be significantly changed. With the comparison of experimental results, the case of swirl angle $45^{\circ}$ and co-swirl flow including optimum location of pilot burner were chosen in terms of the flame stability and emissions for the development of hybrid/dual swirl jet combustor.