• Title/Summary/Keyword: Micro-formability

Search Result 39, Processing Time 0.032 seconds

Replication of Polyethylene Nano-Microstructures Using Ultrasonic Forming (초음파성형을 이용한 폴리에틸렌 나노 마이크로 구조물의 복제)

  • Lee, Chi-Hoon;Yu, Hyun-Woo;Shin, Bo-Sung;Ko, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1209-1216
    • /
    • 2009
  • Nano-micro hierarchical structures that nanoprotrusions were formed on the network-type microstructures were fabricated using an ultrasonic vibration forming technology. A commercial ultrasonic welding system was used to apply ultrasonic vibration energy. To evaluate the formability of ultrasonic vibration forming, nickel nano-micro hierarchical mold was fabricated and polyethylene (PE) was used as the replication material. The optimal molding time was 3.5 sec for PE nano-micro hierarchical structures. The molding process was conducted at atmospheric pressure.

Dimensional change of micro forged part on precision cold forging (미세성형품의 정밀 냉간단조시 치수변화 분석)

  • Lee, M.W.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.254-258
    • /
    • 2008
  • Dimensional accuracy is very important quality in micro forged part, especially on forged part. Dimension of forged part is changed continuously during forging process. Loading, unloading and ejecting stage affects dimensional of the forged tool. The elasto-plastic material model for billet and elastic model for die were used to analyze these changes. At same time, the calculated results were compared and analyzed by the experiment on same conditions. From the experimental and analytical studies, we can calculated the amount of difference between die and forged part, that is 0.49% based on the die dimension. The dimensional change is smaller than that of general sized-forged part,0.6%.

  • PDF

A Numerical Prediction of the Forming Limit Diagram Considering Damage Evolution (결함 성장을 고려한 수치해석적 성형한계도 예측)

  • Kim, K.T.;Song, J.H.;Lee, G.A.;Lee, H.W.;Kim, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.596-600
    • /
    • 2009
  • Finite element simulation is an alternative method to practically find the forming limit diagram(FLD). In this paper, the novel fracture criterion is utilized to predict the FLD in conjunction with finite element analysis for sheet forming. The principal scheme of the fracture criterion in this paper is that growth of the micro voids leads up to fracture in the viewpoint of micro-mechanics. The numerical FLD is verified by results of the out-of plane stretching test using hemispherical punch. The verification is also conducted about two types of material. These results are in good accord with the experimental results. Especially, the proposed scheme is appropriate to predict FLDs for a restricted material with low ductility after the instability point or ultimate tensile strength.

A study on Linear Pattern Fabrication of Plate-type PC (PC소재의 선형 패턴 제작에 관한 연구)

  • Joung, Y.N.;Lee, E.K.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.277-280
    • /
    • 2008
  • Recently, a demand of nano/micro patterned polymer for display or biochip has been rising. Then many studies have been carried out. Nano/micro-embossing is a deformation process where the workpiece materials is heated to permit easier material flow and then forced over a planar patterned tool. In this work, the hot-emboss process is performed with different forming conditions; forming temperature, load, press hold time, to get the proper condition for linear pattern fabrication on plated-type polymers (PC). Replicated pattern depth increases in proportion to the forming temperature, load and time. Reduction of the workpiece thickness increases according to press hold time. In process of time, reduction ratio of workpiece thickness decreases because of surface area increment of the workpiece and pressure decline on it.

  • PDF

The Effect of Process Variables on Mechanical Properties and Formability in GTA Welds of Commercial Pure Titanium Sheet (순 Ti 박판 GTA 용접부의 기계적 성질 및 성형성에 미치는 공정변수의 영향)

  • Kim, Jee-Hoon;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Nho-Kwang;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • In this work, the effect of welding variables on weldability of gas tungsten arc(GTA) welding was investigated with experimental analysis for a commercial pure(CP) titanium (Grade.1). The GTA welding tests on sheet samples with 0.5mm in thick were carried out at different process variables such as arc length, welding speed and electrode shape. In order to search an optimum arc length with full penetration, bead- on-plate welding before butt-welding were performed with different arc length conditions. From the bead- on-plate welding results, the optimum condition considering arc stability and electrode loss was obtained in the arc length of 0.8mm. Butt-welding tests based on the arc length of 0.8mm were carried out to achieve the optimum conditions of welding speed and electrode shape. Optimum conditions of welding speed and electrode shape were suggested as 10 mm/s and truncated electrode shape, respectively. It was successfully validated by the microstructural observation, tensile tests, micro-hardness tests and formability tests.

The Effects of the Annealing Heat Treatments and Testing Temperatures on the Mechanical Properties of the Invar Materials (인바재료의 기계적 성질에 미치는 풀림 열처리와 시험온도의 영향)

  • Won, Si-Tae;Kim, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.167-176
    • /
    • 2001
  • The effects of heat treatments and testing temperatures on the mechanical properties of Invar materials were investigated through experiments, which call influence the formability in metal forming fields. Annealing temperatures were changed from $900^{\circ}C$ to $1200^{\circ}C$ with an increment of $100^{\circ}C$ under two different furnace atmosphere(vacuum and H$_2$gas). Microstructure and hardness tests were performed for annealed specimens at room temperature(RT) and tensile tests were also performed by changing annealing temperatures as well as testing temperatures from RT to $300^{\circ}C$. The grain size of annealed materials increased with increasing annealing temperature, while micro-hardness distributions showed almost same hardness values regardless of annealing temperatures. Strength ratio (tensile/yield strength), which influences the forming characteristics of sheet metal, remained almost constant for various experimental conditions in case of unannealed specimens. However, it showed increasing tendency with increasing both annealing and testing temperatures, particularly at the testing temperature higher than $200^{\circ}C$. Therefore it can be concluded that press formability of fully-annealed Invar material can be improved by warm forming technique.

  • PDF

Mechanical Property and Microstructure of the Annealed Fe-Si Alloy Manufactured by Laser-Powder Bed Fusion (L-PBF 공정 처리된 Fe-Si 합금의 열처리 조건에 따른 미세조직 및 기계적 특성)

  • J. Y. Park;M. S. Gwak;S. G. Jeong;H. S. Kim;J. G. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • To overcome a climate change, manufacturing complex-shaped electric mobility parts becomes one of the important issues for enhancing a performance of motor with reducing their weight. Therefore, development of laser-based additive manufacturing shed on light due to their flexible manufacturing capacity that can be suitable to solve the poor formability of Fe-Si alloys for electric mobility parts. Although there are several studies existed to optimize the performance of additively manufactured Fe-Si alloys, the post-annealing effect was not well investigated yet though this is important to control the texture and mechanical properties of additively manufactured parts. In the present work, annealing effect on the mechanical property and microstructure of additively manufactured Fe-4.5Si alloy was investigated. Because of the ordered phase initiation after annealing, the hardness of additively manufactured Fe-4.5Si alloy increased up to 1173 K while a hardness drop occurs at the 1273 K condition due to the micro-crack initiation. The response surface methodology result represents the 1173 K-5 h sample is an optimal condition to maximize the mechanical property of additively manufactured alloy without micro-cracks.

Formability Evaluation of Advanced High-strength Steel Sheets in Role Expansion Based on Combined Continuum-Fracture Mechanics (복합 연속체 파괴 역학에 기초한 초고강도강 판재의 구멍 넓힘 시험 성형성 평가)

  • Ma, N.;Park, T.;Kim, D.;Yoo, D.;Kim, Chong-Min;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.227-230
    • /
    • 2009
  • In order to predict failure behavior of advanced high-strength steel sheets (AHSS) in hole expansion tests, damage model was developed considering surface condition sensitivity (with specimens prepared by milling and punching: 340R, TRIP590, TWIP940). To account for the micro-damage initiation and evolution as well as macro-crack formation, the stress triaxiality dependent fracture criterion and rate-dependent hardening and ultimate softening behavior were characterized by performing numerical simulations and experiments for the simple tension and V-notch tests. The developed damage model and the characterized mechanical property were incorporated into the FE program ABAQUS/Explicit to perform hole expansion simulations, which showed good agreement with experiments.

  • PDF

Mechanical Properties of the Flash Butt Welded Joint of 590MPa High Strength Steel (590MPa급 고강도강 플래시버트 용접이음부의 기계적특성)

  • Jeong, Bo-Young;Woo, In-Su;Kim, Jeong-Kil;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.55-61
    • /
    • 2007
  • Flash butt weldability of 590MPa dual phase steel is carried out under micro metallographical examination and macro mechanical property tests. The objective of present study is to investigate the cause that brings on bond line fracture, and is to improve mechanical properties of the flash butt welded joint. The joint of flash butt welding has a superior tensile property, but has bad formability due to oxide formed at bond interface. The HAZ softening in the weld joint does not show. It was found that mechanical properties were increased with optimizing welding parameters and making application of oil dripping and post-weld heat treatment.