• Title/Summary/Keyword: Micro-deformation

Search Result 480, Processing Time 0.026 seconds

Experimental study on deformation of concrete for shotcrete use in high geothermal tunnel environments

  • Cui, Shengai;Liu, Pin;Wang, Xuewei;Cao, Yibin;Ye, Yuezhong
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.443-449
    • /
    • 2017
  • Taking high geothermal tunnels as background, the deformation of concrete for shotcrete use was studied by simulating hot-humid and hot-dry environments in a laboratory. The research is made up by two parts, one is the influence of two kinds of high geothermal environments on the deformation of shotcrete, and the other is the shrinkage inhibited effect of fiber materials (steel fibers, polypropylene fibers, and the mixture of both) on the concrete in hot-dry environments. The research results show that: (1) in hot and humid environments, wet expansion and thermal expansion happened on concrete, but the deformation is smooth throughout the whole curing age. (2) In hot and dry environments, the concrete suffers from shrinkage. The deformation obeys linear relationship with the natural logarithm of curing age in the first 28 days, and it becomes stable after the $28^{th}$ day. (3) The shrinkage of concrete in a hot and dry environment can be inhibited by adding fiber materials especially steel fibers, and it also obeys linear relationship with the natural logarithm of curing age before it becomes stable. However, compared with no-fiber condition, it takes 14 days, half of 28 days, to make the shrinkage become stable, and the shrinkage ratio of concrete at 180-day age decreases by 63.2% as well. (4) According to submicroscopic and microscopic analysis, there is great bond strength at the interface between steel fiber and concrete. The fiber meshes are formed in concrete by disorderly distributed fibers, which not only can effectively restrain the shrinkage, but also prevent the micro and macro cracks from extending.

Effects of the Thermal Stress and Water Pressure on the Deformation Behavior of Granite (열응력과 수압이 화강암의 변형 거동에 미치는 영향)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • In this study, effects that thermal stress and water pressure have on the deformation behaviour of granite specimens recovered in Gagok Mine are estimated. To analyze effects of the thermal stress and water pressure on the deformation behaviour, granite specimens were preheated with cycles of predetermined temperatures ranging $200^{\circ}C$ to $700^{\circ}C$ and 500, 600, $700^{\circ}C$ specimens were pressurized to 7.5 MPa. The deformation behaviour of the specimens had been studied by performing uniaxial compressive tests. Axial and lateral strains of specimens were found to increase with increasing temperature, and above $600^{\circ}C$, the increase of strains were more pronounced. The reduction trends of uniaxial compressive strength and Young's modulus with temperature appeared to follow an exponential decay function. Specimens under water pressure showed the more inelastic deformation characteristics, which means that water pressure has an effect on the widening and extending of micro-cracks existed in preheated specimens.

Numerical Investigation of Micro Thermal Imprint Process of Glassy Polymer near the Glass Transition Temperature (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링과 해석)

  • Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Song, Jung-Han;Sung, Yeon-Wook;Kim, Moo-Jong;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.45-52
    • /
    • 2009
  • The research on miniature devices based on non-silicon materials, in particular polymeric materials has been attracting more and more attention in the research field of the micro/nano fabrication in recent years. Lost of applications and many literatures have been reported. However, the study on the micro thermal imprint process of glassy polymer is still not systematic and inadequate. The aim of this research I to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature (Tg). An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model form the test data. As a result, the feasibility of the established viscoelastic model for PC near Tg was confirmed and this material model can be used in FE analysis for the prediction and improvement of the micro thermal imprint process for pattern replication.

  • PDF

Development and Verification of PZT Actuating Micro Tensile Tester for Optically Functional Materials

  • Kim Seung-Soo;Lee Hye-Jin;Lee Hyoung-Wook;Lee Nak-Kyu;Han Chang-Soo;Hwang Jai-Hyuk
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.477-485
    • /
    • 2005
  • This paper is concerned with the development of a micro tensile testing machine for optically functional materials such as single or poly crystalline silicon and nickel film. This micro tensile tester has been developed for testing various types of materials and dimensions. PZT type actuation is utilized for precise displacement control. The specifications of the PZT actuated micro tensile testers developed are as follows: the volumetric size of the tester is desktop type of 710mm' 200mm' 270mm; the maximum load capacity and the load resolution in this system are IKgf and 0.0152mgf respectively and; the full stroke and the stoke resolution of the PZT actuator are $1000{\mu}m$ and 10nm respectively. Special automatic specimen installing and setting equipment is applied in order to prevent unexpected deformation and misalignment of specimens during handling of specimens for testing. Nonlinearity of the PZT actuator is compensated to linear control input by an inverse compensation method that is proposed in this paper. The strain data is obtained by ISDG method that uses the laser interference phenomenon. To test the reliance of this micro tensile testing machine, a $200{\mu}m$ thickness nickel thin film and SCS (Single Crystalline Silicon) material that is made with the MEMS fabrication process are used.

A Experimental Study and FE Analysis of the Forming Process with Milli-Component Forming (미세 성형 부품의 성형 공정 해석 및 실험)

  • Ku T. W.;Kang B. S.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.235-238
    • /
    • 2001
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiment. Generally, milli-structure containers or cases like cellular phone vibrator consist of rectangular-shaped drawing to save installation space. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF

An Experimental Approach and Finite Element Analysis on Rectangular Cup Drawing Process of Milli-Component Forming (소형부품의 사각 컵 드로잉 성형 해석에 관한 실험적 연구)

  • 구태완;강범수
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.471-477
    • /
    • 2001
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about smaller than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiments. Special containers or cases of cellular phone vibrator to save installation space are produced by rectangular-shaped drawing. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF

A Comparative study on the solder joint fatigue under thermal and mechanical loading conditions (열하중과 굽힘 하중 조건에서의 솔더조인트 피로 특성 비교연구)

  • Kim, Il-Ho;Lee, Soon-Bok
    • Journal of Applied Reliability
    • /
    • v.7 no.2
    • /
    • pp.45-55
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. Firs, cyclic bending tests were performed using the micro-bending tester. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. Creep deformation was dominant in thermal fatigue and plastic deformation was main parameter for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

Surface Lapping Process and Vickers Indentation of Sapphire Wafer for GaN Epitaxy (GaN 증착용 사파이어 웨이퍼의 표면가공에 따른 압흔 특성)

  • Shin Gwisu;Hwang Sungwon;Kim Keunjoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.632-638
    • /
    • 2005
  • The surface lapping process on sapphire wafer was carried out for the epitaxial process of thin film growth of GaN semiconducting material. The planarization of the wafers was investigated by the introduction of the dummy wafers. The diamond lapping process causes the surface deformation of dislocation and micro-cracks. The material deformation due to the mechanical stress was analyzed by the X-ray diffraction and the Vickers indentation. The fracture toughness was increased with the increased annealing temperature indicating the recrystallization at the surface of the sapphire wafer The sudden increase at the temperature of $1200^{\circ}C$ was correlated with the surface phase transition of sapphire from a $-A1_{2}O_{3}\;to\;{\beta}-A1_{2}O_{3}$.

Study on Residual Stress in Viscoelastic Thin Film Using Curvature Measurement Method

  • Im, Young-Tae;Park, Seung-Tae;Park, Tae-Sang;Kim, Jae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.12-19
    • /
    • 2004
  • Using LSM (laser scanning method) , the radius of curvature due to thermal deformation in polyimide film coated on Si substrate is measured. Since the polyimide film shows viscoelastic behavior, i.e., the modulus and deformation of the film vary with time and temperature, we estimate the relaxation modulus and the residual stresses of the polyimide film by measuring the radius of curvature and subsequently by performing viscoelastic analysis. The residual stresses relax by an amount of 10% at 100$^{\circ}C$ and 20% at 150$^{\circ}C$ for two hours.

An Experimental Approach of Milli-Structure Sheet Metal Forming (미세 박판 성형 특성에 대한 실험적 연구)

  • Ku, T.W.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.471-476
    • /
    • 2001
  • Milli-structure components ate classified as a component group whose size is between macro and micro scales, that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiment. Generally, milli-structure containers or cases like cellular phone vibrator consist of rectangular-shaped drawing to save installation space. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF