• 제목/요약/키워드: Micro-current

Search Result 1,171, Processing Time 0.032 seconds

The Structural and Electrical Properties of Bismuth-based Pyrochlore Thin Films for embedded Capacitor Applications

  • Ahn, Kyeong-Chan;Park, Jong-Hyun;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.84-88
    • /
    • 2007
  • [ $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ ] (BZN), $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN), and $Bi_2Cu_{2/3}Nb_{4/3}O_7$ (BCN) pyrochlore thin films were prepared on $Cu/Ti/SiO_2/Si$ substrates by pulsed laser deposition and the micro-structural and electrical properties were characterized for embedded capacitor applications. The BZN, BMN, and BCN films deposited at $25\;^{\circ}C$ and $150\;^{\circ}C$, respectively show smooth surface morphologies and dielectric constants of about $39\;{\sim}\;58$. The high dielectric loss of the films deposited at $150\;^{\circ}C$ compared with films deposited at $25\;^{\circ}C$ was attributed to the defects existing at interface between the films and copper electrode by an oxidation of copper bottom electrode. The leakage current densities and breakdown voltages in 200 nm thick-BMN and BZN films deposited at $150\;^{\circ}C$ are approximately $2.5\;{\times}\;10^{-8}\;A/cm^2$ at 3 V and above 10 V, respectively. Both BZN and BMN films are considered to be suitable materials for embedded capacitor applications.

Current Trend of Scalp Care Technology of Microneedle Using Fermented Soybean (대두 발효물을 이용한 마이크로니들 두피케어에 관한 최신 동향)

  • Kim, Eun-Ju;Jung, Hyun-Ki;Kim, Sung-Jun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.4
    • /
    • pp.241-251
    • /
    • 2010
  • In recent years, the number of people suffering from depression due to hair loss has been increasing. The treatment methods such as clinical pathology and vanity surgery have been developed. There are therapies and materials for hair growth promotion and hair loss prevention. But the effectiveness of such therapies and materials is not fully evaluated and some side-effects have been reported. In this study, microneedle therapy using very thin and delicate needles promotes absorption of drug. During this therapy, the microneedle makes micro holes that help absorbion of drugs into the scalp. In this study, absorbion of fermented soybean were evaluated. The ingredient has antioxidant, antiandrogen, and antithrombosis effect for alopecia. The fermented soybean is more effective for complex hair loss when used with microneedle. It is because of the microneedle's excellent drug delivery system (DDS). This therapy that increases the absorption of fermented soybean is a very useful scalp care method which prevents, treats and controls alopecia. This microneedle therapy using fermented soybean is an advanced technology for scalp care.

Electrical Conduction Mechanism in the Insulating TaNx Film (절연성 TaNx 박막의 전기전도 기구)

  • Ryu, Sungyeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.32-38
    • /
    • 2017
  • Insulating $TaN_x$ films were grown by plasma enhanced atomic layer deposition using butylimido tris dimethylamido tantalum and $N_2+H_2$ mixed gas as metalorganic source and reactance gas, respectively. Crossbar devices having a $Pt/TaN_x/Pt$ stack were fabricated and their electrical properties were examined. The crossbar devices exhibited temperature-dependent nonlinear I (current) - V (voltage) characteristics in the temperature range of 90-300 K. Various electrical conduction mechanisms were adopted to understand the governing electrical conduction mechanism in the device. Among them, the PooleFrenkel emission model, which uses a bulk-limited conduction mechanism, may successfully fit with the I - V characteristics of the devices with 5- and 18-nm-thick $TaN_x$ films. Values of ~0.4 eV of trap energy and ~20 of dielectric constant were extracted from the fitting. These results can be well explained by the amorphous micro-structure and point defects, such as oxygen substitution ($O_N$) and interstitial nitrogen ($N_i$) in the $TaN_x$ films, which were revealed by transmission electron microscopy and UV-Visible spectroscopy. The nonlinear conduction characteristics of $TaN_x$ film can make this film useful as a selector device for a crossbar array of a resistive switching random access memory or a synaptic device.

Comparison of Physicochemical and Functional Traits of Hanwoo Steer Beef by the Quality Grade

  • Lim, Dong-Gyun;Cha, Ju-Su;Jo, Cheorun;Lee, Kyung Haeng;Kim, Jong-Ju;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.287-296
    • /
    • 2014
  • The physicochemical and functional traits for loin muscles of Hanwoo steers were compared by quality grade (QG). A total of 500 Hanwoo steers were slaughtered, their carcasses were categorized into four groups (QG 1++, 1+, 1, and 2), and the longissimus dorsi muscles were analyzed. QG 1++ group had the highest fat and lowest moisture content (p<0.05). QG 1++ showed higher $L^*$ and $b^*$ color values, higher cooking loss, and lower shear force values, compared with the other groups (p<0.05). The flavor, tenderness, juiciness, and preference scores by sensory evaluation were highly ranked for premium QG groups (1++ and 1+). Regarding the micro compounds, QG 1 and QG 2 had greater amounts of inosine monophosphate, and QG 2 had greater amounts of anserine, carnosine, and creatine, than QG 1++ (p<0.05). QG 1++ and 1+ had higher percentages of oleic acid (C18:1) than QG 2 (p<0.05). Within premium QG 1++ and 1+, the results of the nucleotides, free amino acids, dipeptides, and fatty acids did not show any distinctive differences. Hanwoo beef as determined by the current grading system was not significantly different in terms of functional components; the only significant difference was in intramuscular fat content.

Eutectic Temperature Effect on Au Thin Film for the Formation of Si Nanostructures by Hot Wire Chemical Vapor Deposition

  • Ji, Hyung Yong;Parida, Bhaskar;Park, Seungil;Kim, MyeongJun;Peck, Jong Hyeon;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • We investigated the effects of Au eutectic reaction on Si thin film growth by hot wire chemical vapor deposition. Small SiC and Si nano-particles fabricated through a wet etching process were coated and biased at 50 V on micro-textured Si p-n junction solar cells. Au thin film of 10 nm and a Si thin film of 100 nm were then deposited by an electron beam evaporator and hot wire chemical vapor deposition, respectively. The Si and SiC nano-particles and the Au thin film were structurally embedded in Si thin films. However, the Au thin film grew and eventually protruded from the Si thin film in the form of Au silicide nano-balls. This is attributed to the low eutectic bonding temperature ($363^{\circ}C$) of Au with Si, and the process was performed with a substrate that was pre-heated at a temperature of $450^{\circ}C$ during HWCVD. The nano-balls and structures showed various formations depending on the deposited metals and Si surface. Furthermore, the samples of Au nano-balls showed low reflectance due to surface plasmon and quantum confinement effects in a spectra range of short wavelength spectra range.

Physics-based Algorithm Implementation for Characterization of Gate-dielectric Engineered MOSFETs including Quantization Effects

  • Mangla, Tina;Sehgal, Amit;Saxena, Manoj;Haldar, Subhasis;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.159-167
    • /
    • 2005
  • Quantization effects (QEs), which manifests when the device dimensions are comparable to the de Brogile wavelength, are becoming common physical phenomena in the present micro-/nanometer technology era. While most novel devices take advantage of QEs to achieve fast switching speed, miniature size and extremely small power consumption, the mainstream CMOS devices (with the exception of EEPROMs) are generally suffering in performance from these effects. In this paper, an analytical model accounting for the QEs and poly-depletion effects (PDEs) at the silicon (Si)/dielectric interface describing the capacitance-voltage (C-V) and current-voltage (I-V) characteristics of MOS devices with thin oxides is developed. It is also applicable to multi-layer gate-stack structures, since a general procedure is used for calculating the quantum inversion charge density. Using this inversion charge density, device characteristics are obtained. Also solutions for C-V can be quickly obtained without computational burden of solving over a physical grid. We conclude with comparison of the results obtained with our model and those obtained by self-consistent solution of the $Schr{\ddot{o}}dinger$ and Poisson equations and simulations reported previously in the literature. A good agreement was observed between them.

The Convergence Application Example of Non-destructive Inspection System (비파괴 검사 시스템의 융합 적용 사례)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • This development is for non-destructive machine using X-Ray source about detecting outline faults of below middle size products. The differentiation is product of research and development unspecialized small and medium-sized products using X-Ray light sources can check real time if the surface of an external fault of radiation dose reference, within the leakage. The speed control is possible by software solution. In addition, we're working on possibly block doors for worker safety and equipment at the same time that inner drive can be identified in the image. These principles, as a key enabler of the current inspection system such as the container is small to medium-sized parts - a long way from utilization level is possible. This research will give rise to major effects for other various non-destructive market industries except car-industry. The most important fact is that this developed non-destructive machine is controlled below $0.2micro-S{\mu}v$.

A study on microstructure, corrosion characteries and hardness of pure Ti according to cooling methods (생체용 순수 Ti 주조체의 냉각방법에 따른 주조조직과 부식특성 및 경도에 관한 연구)

  • Kim, Jae-Doo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.65-73
    • /
    • 2001
  • The purpose of this study was to investigate the microstucture and hardness, corrosion of pure Ti alloy, which is widely used as partial denture frame work these days, depending on the cooling method, followed by casting. The first group was bench cooling at room temperature($18^{\circ}C$), the second group was slowly cooled in the furnace from $700^{\circ}C$ to room temperature, and third. rapidly cooled in $0^{\circ}C$ water. The microstructure of each specimen observed by means of photomicrograph taken by electron microscope, in add to the physical characteristics of each specimen were obtained using the rockwell Hardnest Number. the characteristics of corrosion. The results were obtained as follows: 1. From Potentiodynamic plot. we conclude furnace-cooled specimen had the best stabiltity of passive film and that air-cooled specimen showed similar characteristics. The density of electric current of quenched specimen was the highest, which formed kind of unstable passive film. 2. Specimen cooled at room temperature (air cooling) had the highest value of hardness of 81.26HRB, specimen cooled at ice-water, $0^{\circ}C$, had the value of 78.42HRB, and specimen furnace-cooled at $700^{\circ}C$ had lowest value of 77.1HRB. 3. Quenching treated micro-structure formed martensite structure by and large. In case of air cooling, we could see $\alpha$-structure widmanstatten formed overall. In furnace cooling, widmanstatten structure and various shape $\alpha$-structures forming colony with direction were detected.

  • PDF

The effect of 100KHz PWM LED light irradiation on RAT bone-marrow cells (100kHz PWM LED 광조사가 백서 골수세포에 미치는 영향)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Kim, Young-Pyo;Lee, Ho-Sic;Park, Yong-Pil;Yu, Seong-Mi;Lee, Hee-Gap;Kim, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.512-513
    • /
    • 2008
  • The study examined what effects 100kHz PWM LED light irradiation causes to bone marrow cells of SD-Rat when LED characterized cheap and safe is used onto the light therapy by replacing the low 1evel laser. We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Consequent1y, the current value could be controlled by the change of 1eve1 in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590nm transmittance of ELISA reader. As a result, the cell increase of Rat bone marrow cells was verified in 100kHz PWM LED light irradiation group as compared to non-irradiation group.

  • PDF

Novel Cylindrical Magnetic Levitation Stage for Rotation as well as Translation along Axles with High Precisions (고정밀 회전 및 축방향 이송을 위한 신개념 원통형 자기부상 스테이지)

  • Jeon, Jeong-Woo;Caraiani, Mitica;Lee, Chang-Lin;Jeong, Yeon-Ho;Kim, Jong-Moon;Oh, Hyeon-Seok;Kim, Sungshin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1828-1835
    • /
    • 2012
  • In this paper, a conceptual design and a detailed design of novel cylindrical magnetic levitation stage is introduced. This is came from planar-typed magnetic levitation stage. The proposed stage is composed of cylinder-typed permanent magnet array and semi-cylinder-typed 3 phase winding module. When a proper current is induced at winding module, a magnetic levitation force between the permanent magnet array and winding module is generated. The proposed stage can precisely move the cylinder to rotations and translations as well as levitations with the magnetic levitation force. This advantage is useful to make a nano patterning on the surface of cylindrical specimen by using electron beam lithography under vacuum. Two methods are used to calculate required magnetic levitation forces. The one is 2D FEM analysis, the other is mathematical modeling. This paper shown that results of two methods are similar. An assistant plate is introduced to reduce required currents of winding module for levitations in vacuum. The mathematical model of cylindrical magnetic levitation stage is used for dynamic simulation of magnetic levitations. A lead-lag compensator is used for control of the model. Simulation results shown that the detail designed model of the cylindrical magnetic levitation stage with the assistant plate can be controlled very well.