• Title/Summary/Keyword: Micro-batteries

Search Result 61, Processing Time 0.027 seconds

Spherical Silicon/CNT/Carbon Composite Wrapped with Graphene as an Anode Material for Lithium-Ion Batteries

  • Shin, Min-Seon;Choi, Cheon-Kyu;Park, Min-Sik;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.159-166
    • /
    • 2022
  • The assembly of the micron-sized Si/CNT/carbon composite wrapped with graphene (SCG composite) is designed and synthesized via a spray drying process. The spherical SCG composite exhibits a high discharge capacity of 1789 mAh g-1 with an initial coulombic efficiency of 84 %. Moreover, the porous architecture of SCG composite is beneficial for enhancing cycling stability and rate capability. In practice, a blended electrode consisting of spherical SCG composite and natural graphite with a reversible capacity of ~500 mAh g-1, shows a stable cycle performance with high cycling efficiencies (> 99.5%) during 100 cycles. These superior electrochemical performance are mainly attributed to the robust design and structural stability of the SCG composite during charge and discharge process. It appears that despite the fracture of micro-sized Si particles during repeated cycling, the electrical contact of Si particles can be maintained within the SCG composite by suppressing the direct contact of Si particles with electrolytes.

Toxicity of Two Different Sized Lanthanum Oxides in Cultured Cells and Sprague-Dawley Rats

  • Lim, Cheol-Hong
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.181-189
    • /
    • 2015
  • In recent years, the use of both nano- and micro-sized lanthanum has been increasing in the production of optical glasses, batteries, alloys, etc. However, a hazard assessment has not been performed to determine the degree of toxicity of lanthanum. Therefore, the purpose of this study was to identify the toxicity of both nano- and micro-sized lanthanum oxide in cultured cells and rats. After identifying the size and the morphology of lanthanum oxides, the toxicity of two different sized lanthanum oxides was compared in cultured RAW264.7 cells and A549 cells. The toxicity of the lanthanum oxides was also analyzed using rats. The half maximal inhibitory concentrations of micro-$La_2O_3$ in the RAW264.7 cells, with and without sonication, were 17.3 and 12.7 times higher than those of nano-$La_2O_3$, respectively. Similar to the RAW264.7 cells, the toxicity of nano-$La_2O_3$ was stronger than that of micro-$La_2O_3$ in the A549 cells. We found that nano-$La_2O_3$ was absorbed in the lungs more and was eliminated more slowly than micro-$La_2O_3$. At a dosage that did not affect the body weight, numbers of leukocytes, and concentrations of lactate dehydrogenase and albumin in the bronchoalveolar lavage (BAL) fluids, the weight of the lungs increased. Inflammatory effects on BAL decreased over time, but lung weight increased and the proteinosis of the lung became severe over time. The effects of particle size on the toxicity of lanthanum oxides in rats were less than in the cultured cells. In conclusion, smaller lanthanum oxides were more toxic in the cultured cells, and sonication decreased their size and increased their toxicity. The smaller-sized lanthanum was absorbed more into the lungs and caused more toxicity in the lungs. The histopathological symptoms caused by lanthanum oxide in the lungs did not go away and continued to worsen until 13 weeks after the initial exposure.

A study on the Thermopneumatic Actuator with Phase Change for Micro Pump (상변화를 이용한 열공압형 마이크로 펌프용 액츄에이터 성능에 관한 연구)

  • Park, S.;Hwang, J.Y.;Lee, S.;Kang, K.;Kang, H.;Jang, J.;Lee, H.;Kang, S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.425-428
    • /
    • 2006
  • Recently, Direct Methanol Fuel Cell (DMFC) for portable devices has been received much attention because DMFC has a possibility of higher energy density than electrical batteries and smaller size than other fuel cells. This paper presents the fabrication and test of a thermopneumatic microactuator with a phase change for DMFC. A microactuator consists of an inlet an outlet a chamber, a heater and a sensor of resistance temperature detector(RTD). The micoractuator is fabricated by the spin-coating process, the lithograph process, the deep RIE process and so on. The total size of microactuator is $20{\times}20{\times}0.53mm^3$. When the current is applied, the heater heats liquid in chamber. As a result the liquid vaporizes. The response of temperature in the chamber was measured using thermocouple The changed temperature is $3^{\circ}C$ for 5 sec at 0.032W.

  • PDF

High power lithium ion polymer batteries (IV): Nano-sized cathode materials manufactured in a single synthetic step using united eutectic self-mixing method

  • An, Uk;Ra, Dong-Il;Lee, Beom-Jae;Han, Gyu-Seung
    • Rubber Technology
    • /
    • v.6 no.2
    • /
    • pp.91-98
    • /
    • 2005
  • Nano-sized cathode materials for high power lithium ion polymer battery are easily and economically prepared using united eutectic self-mixing method without any artificial mixing procedures of reactants and ultra-miniaturization of products. While the micro-sized $LiNi_{0.7}Co_{0.3}O_2$ exhibits the discharge capacities of 167.8 mAh/g at 0.1C and 142.5 mAh/g at 3.0C, those of the nano-sized $LiNi_{0.7}Co_{0.3}O_2$ are 170.8 mAh/g at 0.1C and 159.3 mAh/g at 3.0C. In the case of $LiCoO_2$, the micro-sized $LiCoO_2$ exhibits the discharge capacities of 134.8 mAh/g at 0.1C and 118.6 mAh/g at 5.0C. Differently, the nano-sized $LiCoO_2$ exhibits the discharge capacities of 137.2 mAh/g at 0.1C and 131.7 mAh/g at 5.0C.

  • PDF

System Analysis and Design for Vibration-Based Power Generation using Piezoelectric Materials (압전 재료를 이용한 진동에너지 변환 전력발생 시스템 해석 및 설계)

  • Keum, Myoung-Hun;Kim, Kyung-Ho;Lee, Seung-Yep;Ko, Byoung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.717-725
    • /
    • 2004
  • A power generation systems are proposed to convert ambient mechanical vibration into electrical energy using cantilever-type piezoelectric materials. The vibration-based power device can be used for self-powered systems without batteries. This paper presents the theoretical analysis for the coupled equations of piezoelectric and structural motions and investigates the dynamic characteristics of the self-power system using transfer function method. The theoretical model is verified by the finite element analysis of the resonance frequency, the dynamic response of the structure and the sensor sensibility. Experimental results measured using a prototype system agree with the theoretical predictions. The system is shown to produce 34.5 ㎼ in average. Finally, we perform the optimal design for system variables to maximize output power.

Electrospray Deposition and Characterization of Single-Walled Carbon Nanotube Thin Films

  • Sundharam, Sridharan;Choi, Kyung-Hyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • Single-walled carbon nanotubes are one among the most promising carbonaceous materials to be used as the electrodes in the devices like micro batteries, supercapacitors, etc. In this study, single-walled carbon nanotube thin films have been fabricated through electrospray deposition technique which is one of the attractive direct printing methods in the field of printed electronics. Single-walled carbon nanotube ink (water dispersed, 3wt %) has been used to fabricate thin films through electrospray deposition technique. The as-deposited SWCNT thin films have been characterized using the appropriate characterization techniques and the results are presented.

  • PDF

System Analysis and Design for a Vibration Converted Power Generator using Piezo Materials (압전 재료를 이용한 진동에너지 변환 전력발생 시스템 해석 및 설계)

  • 금명훈;이승엽;고병식;김경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1059-1066
    • /
    • 2003
  • A power generation system are proposed to convert ambient mechanical vibration into electrical energy using cantilever-type piezoelectric materials. The vibration-based power device can be used for self-powered systems without batteries. This paper presents the theoretical analysis for the coupled equations of piezoelectric and structural motions and investigates the dynamic characteristics of the self-power system using transfer function method. The theoretical model is verified by the finite element analysis of the resonance frequency, the dynamic response of the structure and the sensor sensibility. Experimental results measured using a prototype system agrees with the theoretical predictions. The system is shown to produce 2.53㎼ in average. Finally, we perform the optimal design for system variables to maximize output power.

  • PDF

Fabrication and electrochemical characterization of amorphous vanadium oxide thin films for thin film micro-battery by reactive r.f. sputtering (반응성 r.f. 스퍼터링에 의한 마이크로 박막 전지용 산화바나듐 박막의 제작 및 전기화학적 특성 평가)

  • 전은정;신영화;남상철;윤영수;조원일
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.42-47
    • /
    • 2000
  • The amorphous vanadium oxide thin films for thin-film rechargeable lithium batteries were fabricated by r.f. reactive sputtering at room temperature. As the experimental parameter, oxygen partial pressure was varied during sputtering. At high oxygen partial pressures(>30%), the as-deposited films, constant current charge/discharge characteristics were carried out in 1M $LiPF_6$, EC:DMC+1:1 liquid electrolyte using lithium metal as anode. The specific capacity of amorphous $V_2O_5$ after 200cycles of operation at room temperature was higher compared to crystalline $V_2O_5$. The amorphous vanadium oxide thin film and crystalline film showed about 60$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$ and about 38$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$, respectively. These results suggest that the battery capacity of the thin film vanadium oxide cathode strongly depends on the crystallinity.

  • PDF

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.