• Title/Summary/Keyword: Micro-aerobic

Search Result 22, Processing Time 0.016 seconds

Kinetic Studies of Lactic Acid Fermentation (Part 3) Effect of Phenol Derivatives on Fermentation (유산균발효에 관한 동력학적 연구 (제3보) 발효에 미치는 Phenol 유도체의 영향)

  • LEE Keun-Tai;YANG Hyeun-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.212-216
    • /
    • 1981
  • The growth of Lactobacillus bulgaricus treated with vanillin, ortho-vanillin and guaiaco1 was studied on synthetic medium in mechanically agitated chemostat culture, The exponential-phase growth rate exhibited a maximum at the cells treated with 50 ppm vanillin. That stimulation, however, appears to be an effect on growth rate rather than total cell growth. And the others were inhibited by the chemicals. Much greater inhibition in growth of the cells treated with 100 ppm of each chemical than oars treated with 50 ppm was observed after 25 hour fomentation. For aerobic microbes, the alcohol dehydrogenase reaction is enhanced for the reproduction of NAD, which consequently cause to stimulate fermentation. For micro-aerophilic microbes , however, the same effect was not observed at the present study at least in the case of cell concentration. However except f or one treated with 50 ppm vanillin the same effect was observed in the case of growth is to. From the result using the glucose as a substrate, it was found that the cell concentrations measured in terms of ultimate optical density (UOB/ml), were 0.96 and 0.92, when treated with 50 and 100 ppm vanillin; 0.40 and 0.45 when treated with ortho-vanillin 50 and 100 ppm: 0.49 and 0.47, when treated with guaiacol 50 and 100 ppm. The specific growth rates were 0.44, 0.15, 0.25, 0.29, 0.37, and 0.34; the specific production rates wire 0.33, 0.15, 0.16, 0.22, 0.28, and 0.26 and the glucose concentrations (g/1) after 25 hour fermentation were 23.5, 32.8, 31.5, 29.5, 28.0 and 28.8, these all in the same sequences as the first.

  • PDF

Development of integrated microbubble and microfilter system for liquid fertilizer production by removing total coliform and improving reduction of suspended solid in livestock manure (가축분뇨 내 대장균 제거와 부유물질 저감 효율 향상을 통한 추비 생산용 미세기포 부상분리와 마이크로 필터 연계 시스템 개발)

  • Jang, Jae Kyung;Lee, Donggwan;Paek, Yee;Lee, Taeseok;Lim, Ryu Gap;Kim, Taeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.139-147
    • /
    • 2021
  • Livestock manure is used as an organic fertilizer to replace chemical fertilizers after sufficient fermentation in an aerobic bioreactor. On the other hand, liquid manure disposal problems occur repeatedly because soil spraying is restricted during the summer when the crops are growing. To use liquid fertilizer (LF) as an additional nutrient source for crops, it is necessary to reduce the amount of suspended solids (SS) in the liquid fertilizer and secure stability problems against pathogenic microorganisms. This study examined the effects of the simultaneous SS removal and E.coli sterilization in the LF using the microbubble (MB) generator (FeMgO catalyst insertion). The remaining SS were further removed using the integrated microbubble and microfilter system. During the floating process in the MB device, the SS were removed by 57.9%, and the coliform group was not detected (16,200→0 MPN/100 mL). By optimizing the HRT of the integrated system, the removal efficiency of the SS was improved by 92.9% under the 0.1h of HRT condition. After checking the properties of the treated LF, 64.5%, 70.1%, 54.9%, and 51.5% of the TCOD, SCOD, PO4-P, and TN, respectively, were removed. The treated effluent from such an integrated system has a lower SS content than that of the existing LF and does not contain coliforms; therefore, it can be used directly as an additional fertilizer.