• Title/Summary/Keyword: Micro-Sand

Search Result 137, Processing Time 0.026 seconds

The use of river sand for fine aggregate in UHPC and the effect of its particle size

  • Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.431-441
    • /
    • 2020
  • For the purpose of improving the properties of UHPC as well as the economic efficiency in production of the material, Availability of river sands as fine aggregate instead of micro silica sand were investigated. Four different sizes of river sands were considered. Using river sand instead of micro silica sand increased the flowability, and decreased the yield stress and plastic viscosity in rheological properties, and the effect was higher with larger particle size of river sand. It was demonstrated by analyses based on the packing density. In the results of compressive strength and elastic modulus, even though river sand was not as good as micro silica sand, it could provide high strength of over 170 MPa and elastic modulus greater than 40 GPa. The difference in compressive strength depending on the size of river sand was explained with the concept of maximum paste thickness based on the packing density of aggregate. The flexural performance with river sand also presented relatively lower resistance than micro silica sand, and the reduction was greater with larger particle size of river sand. The flexural performance was proven to be also influenced by the difference in the fiber orientation distribution due to the size of river sand.

The Method to Select the Optimal Particle Size of Earth by Optimum Micro-filler (최밀충전에 의한 흙의 적정입도 선정 방법)

  • Hwang, Hey Zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.137-143
    • /
    • 2013
  • The purpose of this study is to suggest optimum micro-filler experiment method to select the optimal particle size of earth for using in earth construction works and test this suggestion through compressive strength measurement. According to the results of selecting the method to choose the optimum micro-filler mixing of earth and sand, three-stage filling(plate tamping) showed relatively high results and so was estimated to be the proper filling method. According to the results of optimum micro-filler experiment of earth and sand by the maximal sizes of sand, between 80% and 90% showed the highest result values. The larger the maximum size of sand was, the lower the addition ratio of sand was in optimum micro-filler mixing. According to the results of compressive strength experiment by the particle sizes of earth and sand, 90% in the addition ratio of sand showed the highest results, and so tended to be similar to the results of unit volume weight experiment.

Effective Use of Aggregate Fines (석분의 효과적인 이용에 관한 연구)

  • 백신원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixture such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixture such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the finished mixture. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the deposits of natural sands have slowly been depleted, it has become necessary and economical to produce crushed sand(manufactured fine aggregate). It is reported that crushed sand differs from natural sands in gradation, particle shape and texture, and that the content of micro fines in the crushed sand affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with higher micro fines. This study provides a firm data to apply crushed sand with higher micro fines.

  • PDF

An experimental study on strength of hybrid mortar synthesis with epoxy resin, fly ash and quarry dust under mild condition

  • Sudheer, P.;Muni Reddy, M.G.;Adiseshu, S.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.

Performance Evaluation of Lab-scale High Rate Coagulation System for CSOs Treatment (강우유출수의 신속한 처리를 위한 고속응집시스템의 성능 평가 -실험실 규모 장치를 중심으로-)

  • Gwon, Eun-Mi;Oh, Seok-Jin;Cho, Seong-Ju;Lee, Seng-Chul;Ha, Sung-Ryong;Lim, Chea-Hoan;Park, Ji-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.629-639
    • /
    • 2010
  • To evaluate the performance of high rate coagulation system(HRCS) for CSOs treatment, fundamental function of lab scale HRCS has been tested by using the Jar tester and lab scale HRCS. The optimum pH dose by Streaming Current value was found in the range of 5.3~6.0 in Fe(III), and in the range of 5.8~6.6 in Al(III) and the optimum chemical dose were 0.44mM of $Al_2(SO_4)_3$ and 0.93mM of $FeCl_3$. The removal efficiencies at optimum $Al_2(SO_4)_3$ dose were 75%($TCOD_{Cr}$), 97%(TP), 95%(SS) and 96%(turbidity), respectively. And the removal efficiency of particles with less than $5{\mu}m$ of diameter was 70% and that of particles with higher than $5{\mu}m$ of diameter was 90%. The optimum alum dose in lab scale HRCS was 150mg/L, and the treatment efficiency was the best with addition of 1.0mg/L polymer. The effect of Micro sand addition was not clear, because the depth of the sediment tank in lab scale HRCS was not long enough. But the HRT of this lab scale HRCS was able to be shorten less then 7 minutes by adding the micro sand. The surface loading rates with respect to using different chemicals were 0.43m/h with alum only, 5.78m/h with alum and polymer and 6.22m/h with alum, polymer and micro sand. As a result, HRCS using coagulant, polymer and micro sand developed in this study was evaluated to be very effective for CSOs treatment.

Fiber orientation distribution of reinforced cemented Toyoura sand

  • Safdar, Muhammad;Newson, Tim;Waseem, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 2022
  • In this study, the fiber orientation distribution (FOD) is investigated using both micro-CT (computerized tomography) and image analysis of physically cut specimens prepared from Polyvinyl Alcohol (PVA) fiber reinforced cemented Toyoura sand. The micro-CT images of the fiber reinforced cemented sand specimens were visualized in horizontal and vertical sections. Scans were obtained using a frame rate of two frames and an exposure time of 500 milliseconds. The number of images was set to optimize and typically resulted in approximately 3000 images. Then, the angles of the fibers for horizontal sections and in vertical section were calculated using the VGStudio MAX software. The number of fibers intersecting horizontal and vertical sections are counted using these images. A similar approach was used for physically cut specimens. The variation of results of fiber orientation between micro-CT scans and visual count were approximately 4-8%. The micro-CT scans were able to precisely investigate the fiber orientation distribution of fibers in these samples. The results show that 85-90% of the PVA fibers are oriented between ±30° of horizontal, and approximately 95% of fibers have an orientation that lies within ±45° of the horizontal plane. Finally, a comparison of experimental results with the generalized fiber orientation distribution function 𝜌(θ) is presented for isotropic and anisotropic distribution in fiber reinforced cemented Toyoura sand specimens. Experimentally, it can be seen that the average ratio of the number of fibers intersecting the finite area on a vertical plane to number of fibers intersecting the finite area on a horizontal plane (NVtot/NHtot) cut through a sample varies from 2.08 to 2.12 (an average ratio of 2.10 is obtained in this study). Based up on the analytical predictions, it can be seen that the average NVtot/NHtot ratio varies from 2.13 to 2.17 for varying n values (an average ratio of 2.15).

Particle Spacing Analysis of Frozen Sand Specimens with Various Fine Contents by Micro X-ray Computed Tomography Scanning (Micro X-ray CT 촬영을 통한 동결 사질토 시료의 세립분 함유량에 따른 입자간 거리 분석)

  • Chae, Deokho;Lee, Jangguen;Kim, Kwang-Yeom;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • The mechanical characteristics of frozen sand greatly depend on the frozen temperature and the fine contents according to the previous study by Chae et al. (2015). There are two hypotheses to explain this experimental results; one is the unfrozen water contents greatly affected by the fine contents and frozen temperature and the other is the sand particle spacing greatly affected by the pore-ice. To evaluate the latter hypothesis, the micro X-ray CT scan was performed. The micro X-ray CT scanning, one of the actively performed interdisciplinary research area, has a high resolution with micrometer unit allows to investigate internal structure of soils. In this study, X-ray CT technique was applied to investigate the effect of the frozen temperature and fine contents on the sand particle minimum and average spacing with the developed image processing techniques. Based on the spacing analysis, the frozen temperature and fine contents have little influence on the sand particle spacing in the frozen sand specimens.

Installation of Micro-piles Appropriate to Soil Conditions (지반조건에 따른 마이크로파일 설치방법에 관한 연구)

  • Hwang, Tae-Hyun;Mun, Kyeong-Ryeon;Shin, Yong-Suk;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.55-65
    • /
    • 2012
  • This study performs model test to propose the installation method of micro-pile appropriate to various soil conditions such as sand or silt soil. As a result, the crossed installation method (${\theta}$ < $0^{\circ}$) of micro-pile is effective in resisting a compression displacement of soil in the case of silt exhibiting the punching shear failure. And the inclined installation method (${\theta}$ > $0^{\circ}$ or ${\theta}$ < $0^{\circ}$) of micro-pile is effective in resisting a lateral displacement of soil in the case of sand to exhibiting the general or local shear failure.

Study of sand blaster dry etched glass wafer surface for micro device package (샌드 블러스터로 건식 식각한 마이크로 소자 패키지용 유리 웨이퍼의 표면 연구)

  • Kim, Jong-Seok;Nam, Kwang-Woo;Choa, Sung-Hoon;Kwon, Jae-Hong;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.245-250
    • /
    • 2006
  • In this paper, glass cap wafer for MEMS device package is fabricated by using sand blaster dry etcher and Its surface is studied. The surface of dry etched glass is analyzed by using SEM, and many glass particles and micro cracks are observed. If these kind of particles were dropped from glass to the surface of device, It would make critical failure to the operation of device. So, several cleaning and etching methods are induced to remove these kinds of dormant failure mode and optimized condition is found out.