• Title/Summary/Keyword: Micro-Power

Search Result 1,674, Processing Time 0.028 seconds

Effective electromechanical coupling coefficient of adaptive structures with integrated multi-functional piezoelectric structural fiber composites

  • Koutsawa, Yao;Tiem, Sonnou;Giunta, Gaetano;Belouettar, Salim
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.501-515
    • /
    • 2014
  • This paper presents a linear computational homogenization framework to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) of adaptive structures with piezoelectric structural fiber (PSF) composite elements. The PSF consists of a silicon carbide (SiC) or carbon core fiber as reinforcement to a fragile piezo-ceramic shell. For the micro-scale analysis, a micromechanics model based on the variational asymptotic method for unit cell homogenization (VAMUCH) is used to evaluate the overall electromechanical properties of the PSF composites. At the macro-scale, a finite element (FE) analysis with the commercial FE code ABAQUS is performed to evaluate the effective EMCC for structures with the PSF composite patches. The EMCC is postprocessed from free-vibrations analysis under short-circuit (SC) and open-circuit (OC) electrodes of the patches. This linear two-scale computational framework may be useful for the optimal design of active structure multi-functional composites which can be used for multi-functional applications such as structural health monitoring, power harvest, vibration sensing and control, damping, and shape control through anisotropic actuation.

System identification of a building structure using wireless MEMS and PZT sensors

  • Kim, Hongjin;Kim, Whajung;Kim, Boung-Yong;Hwang, Jae-Seung
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.191-209
    • /
    • 2008
  • A structural monitoring system based on cheap and wireless monitoring system is investigated in this paper. Due to low-cost and low power consumption, micro-electro-mechanical system (MEMS) is suitable for wireless monitoring and the use of MEMS and wireless communication can reduce system cost and simplify the installation for structural health monitoring. For system identification using wireless MEMS, a finite element (FE) model updating method through correlation with the initial analytical model of the structure to the measured one is used. The system identification using wireless MEMS is evaluated experimentally using a three storey frame model. Identification results are compared to ones using data measured from traditional accelerometers and results indicate that the system identification using wireless MEMS estimates system parameters with reasonable accuracy. Another smart sensor considered in this paper for structural health monitoring is Lead Zirconate Titanate (PZT) which is a type of piezoelectric material. PZT patches have been applied for the health monitoring of structures owing to their simultaneous sensing/actuating capability. In this paper, the system identification for building structures by using PZT patches functioning as sensor only is presented. The FE model updating method is applied with the experimental data obtained using PZT patches, and the results are compared to ones obtained using wireless MEMS system. Results indicate that sensing by PZT patches yields reliable system identification results even though limited information is available.

Optimization and Analysis of Output Pinion Design for Worm Gear Reducer (워엄기어 감속기의 출력피니언 최적설계와 해석)

  • Cho, Seonghyun;Kim, Hyeonkyeong;Kim, Dongseon;Zhen, Qin;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.108-113
    • /
    • 2020
  • Pinions are generally heavy and integrated with a shaft. Thus, fabricating a pinion is a material- and machining-intensive task characterized by low productivity. Contact of the output pinion with a sliding surface or a cloud contact causes loss of power because of friction. Consequently, the output pinion undergoes considerable wear and tear at its ends, which adversely affects the overall transmission efficiency of decelerators. To improve transmission efficiency and extend gear life, an optimum output pinion design is required. To this end, in this study, an output pinion for worm gear decelerators was designed and optimized by means of product verification through prototyping and performance evaluation to improve gear life and productivity. The optimized design was validated and subjected to structural analysis.

Laser Head Design and Heat Transfer Analysis for 3D Patterning (3차원 패터닝을 위한 레이저 헤드설계 및 열해석)

  • Ye, Kang-Hyun;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.46-50
    • /
    • 2016
  • A laser head was designed for micro-scale patterning and joining applications. The target feature size of the pattern was $100{\mu}m$, and optics were designed to perform the target. Two singlet lenses were combined to minimize the chromatic aberration, and the geometry of the lenses was calculated by using the raytracing method with a commercial software program. As a restriction of lens design, the focal length was set at 100mm, and the maximum diameter of the lens or beam size was limited to 10mm for the assembly in the limited cage size. The maximum temperatures were calculated to be $1367^{\circ}C$, $1508^{\circ}C$, and $1905^{\circ}C$ for 10, 12, and 15 Watts of power, respectively. A specially designed laser head was used to compensate for the distance between the object and the lens. The detailed design mechanism and 3D data were presented. The optics design and detailed performance of the lens were analyzed by using MTF and spot diagram calculation.

Improvement and Evaluation of Portable Electrical Ventilator (전기 구동 이동형 인공호흡기의 개선 및 평가)

  • Ko, S.H.;Choi, N.B.;Kim, D.W.;Lee, S.H.;Oh, Y.S.;Lee, K.H.;Lee, S.H.;Lee, T.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.149-150
    • /
    • 1998
  • We have developed electrically driven portable ventilator and evaluated through in-vitro and in-vivo test. Ventilator is consists of DC servo motor(Kollmorgen), piston and ball screw, sensing system, power system with backup battery and micro controller. For the precise and stable volume control, the dynamic brake and the PI speed control loop is employed. The main functions are as followers; control, control+sigh, control/assist, control/assist+sigh and SIMV. The animal experiment showed stable performance when it is operated in control mode.

  • PDF

Mixing in a Microchannel by using Induced-charge Electro-osmosis (마이크로 채널 내 유도-전하 전기삼투에 의한 혼합)

  • Jeon, Young-Hun;Heo, Young-Gun;Jung, Won-Hyuk;Alapati, Suresh;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents an experimental study on the performance of a micro-mixer using AC electro-osmotic flow. The microchannel is made of PDMS for the side and top walls and glass patterned with ITO for the bottom wall. We first investigated the effect of the applied potential as well as the frequency on the slip velocity. We have found that the slip velocity is roughly proportional to the applied voltage in line with the Helmholtz-Smoluchowski equation and there is an optimum frequency at which the slip velocity becomes maximized. To find the optimum parameters for mixing device we tested our device for various design parameters. It turned out that the best mixing effect is obtained approximately when the electrode angle is $30^{\circ}$, electrode width $200\;{\mu}m$, and the frequency of power supply 700 Hz.

Development of Statistical Model for Line Width Estimation in Laser Micro Material Processing Using Optical Sensor (레이저 미세 가공 공정에서 광센서를 이용한 선폭 예측을 위한 통계적 모델의 개발)

  • Park Young Whan;Rhee Sehun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.27-37
    • /
    • 2005
  • Direct writing technology on the silicon wafer surface is used to reduce the size of the chip as the miniature trend in electronic circuit. In order to improve the productivity and efficiency, the real time quality estimation is very important in each semiconductor process. In laser marking, marking quality is determined by readability which is dependant on the contrast of surface, the line width, and the melting depth. Many researchers have tried to find theoretical and numerical estimation models fur groove geometry. However, these models are limited to be applied to the real system. In this study, the estimation system for the line width during the laser marking was proposed by process monitoring method. The light intensity emitted by plasma which is produced when irradiating the laser to the silicon wafer was measured using the optical sensor. Because the laser marking is too fast to measure with external sensor, we build up the coaxial monitoring system. Analysis for the correlation between the acquired signals and the line width according to the change of laser power was carried out. Also, we developed the models enabling the estimation of line width of the laser marking through the statistical regression models and may see that their estimating performances were excellent.

A Effects of Magnetic Field For Fiber Laser Micro Welding Process Using Carbon Steel of SCP1-S (자기장 영향에 따른 냉연압연 강판의 파이버 레이저 마이크로 접합 공정)

  • Lee, C.K.;Lee, W.R.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.433-438
    • /
    • 2012
  • We have studied on welding dissimilar materials of Carbon steel SCP1-S by using laser beam. In this research we have performed some experiments to know the possibility of welding dissimilar materials using laser beam and magnetic fields by adjusting the power output of 35W laser. Other conditions of the experiments were as follows : the welding speed was varied in the range 10 m/min nitrogen gas was used as shield gas, the flow value of shield gas was ranged 10 L/min. In order to ascertain of the welded surface, we have done the tensile strength testing, the hardness testing and the microscope observation. As a result, we have found that tensile strength was the highest at the condition of the welding speed of 10mm/s, the flow value of 10 L/min, the gap of two materials 0, and the use of nitrogen gas. Above testings have also showed that the tensile strength was generally satisfactory since the penetration of welding was almost complete due to the thinness of the materials. In addition, the formation of the welded area was excellent when it had the highest tensile strength.

Fabrication of Diffraction Grating Mold Using Dot Pattern (도트 패턴을 이용한 회절 격자 금형 제작)

  • Noh, Ji-Whan;Lee, Jae-Hoon;Sohn, Hyon-Kee;Suh, Jeong;Shin, Dong-Sig;Joung, Young-Un
    • Laser Solutions
    • /
    • v.9 no.3
    • /
    • pp.1-5
    • /
    • 2006
  • Diffraction grating is the optical device which has periodic pattern. Decorative logotypes is the one of application of diffraction grating. In this paper diffraction grating for decorative logotype is fabricated by dot pattern in stead of line pattern. A metallic mold for diffraction gratings is fabricated with a mode-locked 12 ps Nd:YVO4 laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate dot patterns. In order to minimize the dot diameter, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application

  • PDF

A Korean Festival in Japan and the Politics of Place (재일 한인 축제를 통해서 본 장소의 정치)

  • Lee, Hee-Sook
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.3
    • /
    • pp.248-261
    • /
    • 2003
  • Through a qualitative analysis of the Ikuno Korean Festival in Osaka, this article examines and critiques how identities are constructed, and how this process is shaped by the mediation of intra and inter-community concerns. Particular attention is paid to the potential of reorganized culture through a thinking of similarity rather than difference. The dynamic interrelations suggest that festival provides a particular and informal public sphere wherein certain social logics and identities are contested. These discursive arenas are therefore marked by certain exclusions and inclusions. This study shows the complex process of identification at the micro-level through which identification is constituted and continuously negotiated.

  • PDF