• Title/Summary/Keyword: Micro-Manipulation

Search Result 88, Processing Time 0.047 seconds

A Design and Manufacturing of Two Types of Micro-grippers using Piezoelectric Actuators for the Micromanipulation (미세 조작을 위한 압전 구동 집게의 설계 및 제작)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.246-250
    • /
    • 2003
  • In this study, two new types of micro-grippers in which micro-fingers are actuated by piezoelectric multi-layer benders and stacks are introduced for the manipulation of micrometer-sized objects. First, we constructed a 3-chopstick-mechanism tungsten gripper, which is composed of three chopsticks: two are designed to grip micro-objects, and tile third is used to help grasp and release the objects through overcoming especially electrostatic force among some surface effects including electrostatic, van der Waals forces and surface tension. Second, a 2-chopstick-mechanism silicon micro-gripper that uses an integrated force sensor to control the gripping force was developed. The micro-gripper is composed of a piezoelectric multilayer bender for actuating the gripper fingers, silicon fingertips fabricated by use of silicon-based micromachining, and supplementary supports. The micro-gripper is referred to as a hybrid-type micro-gripper because it is composed of two main components; micro-fingertips fabricated using micromachining technology to integrate a very sensitive force sensor for measuring the gripping force, and piezoelectric gripper finger actuators that are capable of large gripping forces and moving strokes. The gripping force signal was found to have a sensitivity of 667 N/V. To the design of each of components of both of the grippers. a systematic design approach was applied, which made it possible to establish the functional requirements and design parameters of the micro-grippers. The micro-grippers were installed on a manual manipulator to assess its performance in tasks such as moving micro-objects from one position to a desired position. The experiment showed that the micro-grippers function effectively.

  • PDF

Dexterous Manipulation from Pinching to Power Grasping-Effective strategy according to object dimensions and grasping position-

  • Hasegawa, Yasuhisa;Rukuda, Toshio;Kanada, Kensaku
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.24-27
    • /
    • 2003
  • This paper discusses practical strategies for transition from a pinching to a power grasping, where a multi-fingered hand mounted on a robotic arm envelops a cylindrical object on a table. When the manipulation system grasps a cylindrical object like a pen on a desk, a complete enveloping is not impossible in the initial configuration. The system firstly pinches the object only with two or three fingers and then grasp it with fingers and a palm after regrasping. In this pinching-grasping transition maneuver, human unconsciously selects proper strategy according to some conditions including object dimensions and initial pinching positions. In this paper we therefore develop six possible strategies for this pinching-grasping transition and then investigate their performances for some objects with various dimensions and various grasping positions, using numerical simulations. Based on their results, effective strategies are implemented by using a hand-arm system.

  • PDF

Manipulation of Micro-Structure by Self-Powered Bacteria (박테리아의 추진을 이용한 마이크로 구조의 조작)

  • Kim, Min-Jun;Byun, Do-Young;Kumar, Vijay;Breuer, Kenneth S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1433-1436
    • /
    • 2008
  • Flagellate bacteria such as Escherichia coli or Serratia marcescens possess a remarkable motility system based on a reversible rotary motor. We have employed S. marcescens as microactuators in low Reynolds number fluidic environments to move a larger engineering element around. Microstructures fabricated using conventional microfabrication techniques are blotted on the swarm plate, which leaves a bacterial monolayer on the surface of the microstructure. We have investigated microstructures powered by bacteria to determine how cell orientation on the microstructure surface relates to the swarming patterns as well as how the orientation is affected by the blotting process. This study will help to refine directional control of bacterial transporters by exploiting bacterial sensory mechanisms.

  • PDF

Intelligent User Interface for Teleoperated Microassembly

  • Song, Eun-Ha;Kim, Deok-Ho;Kim, Kyunghwan;Lee, Jaehoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.168.2-168
    • /
    • 2001
  • Generally, operators suffer much difficulty in manipulating micro-nano-sized objects without assisting of human interface, due to the scaling effects in micro/nano world. Thus, the micromanipulation system based on the teleoperation techniques enables operators to manipulate the micro objects easily by transferring both human motion and manipulation skills to the micromanipulator. In teleoperated microassembly, it is necessary to provide a useful user interface for facilitating micro assembly task executed by human operators. In this paper, Intelligent User Interface (UI) for teleoperated microassembly is proposed. The proposed intelligent UI improves task performance by teleoperated micromanipulation as well as guides operators to succeed in desirable ...

  • PDF

Development of Multiple Beam Optical Tweezers

  • Lee Dong-Jin;LeBrun Thomas W.;Balijepalli Arvind;Gorman JasonJ.;Gagnon Cedric;Hong Dae-Hie;Chang Esthe rH.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1501-1506
    • /
    • 2005
  • This paper presents the design of a multiple beam optical tweezers instrument used for manipulating micro/nano-sized components. The basic equations used in designing the optical tweezers are derived and the stable and time-sharing multiple beam optical tweezers are constructed with scanning mirrors. The laser beam passes through a series of optical components such as lenses, mirrors, and scanning mirrors, and overfills the entrance aperture of microscope objective, which gives a stable trap. By rotating the laser beam with the scanning mirror, the focal positions are translated in the specimen plane and multiple micro/nano-sized objects can be moved. The constructed optical tweezers is used to manipulate cells and liposomes simultaneously and to trap multiple nano-wires. The experiments prove that the developed optical tweezers can be a very versatile manipulation tool for studying gene therapy and nano device fabrication.

  • PDF

Development of Biological Cell Manipulation System using Visual Tracking Method

  • Lee, Geunho;Kang, Hyun-Jae;Kwon, Sang-Joo;Park, Gwi-Tae;Kim, Byungkyu
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2911-2914
    • /
    • 2003
  • Conventionally, biological manipulations have been performed manually with long training and pretty low success rates. To overcome this problem, a novel biological manipulation system has been developed to manipulate biological cells without any interference of a human operator, In this paper, we demonstrate a development of tole-autonomous Cell Manipulation System (CMS) using an image processing at a remote site. The CMS consists of two manipulators, a plane stage, and an optical microscope. We developed deformable template-model-matching algorithm for micro objects and pattern matching algorithm of end effect for these manipulators in order to control manipulators and the stage. Through manipulation of biological cells using these algorithms, the performance of the CMS is verified experimentally.

  • PDF

A Study on the Development and the Monitoring of Micro Hole Drilling Machine (미소경 드릴링 머신의 시작과 감시에 관한 연구)

  • 백인환;정우섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.62-68
    • /
    • 1994
  • Recently, the trends toward reduction in size and weight of industrial products increased the application of micro hole for manufacturing gadgets of high precision and gave rise to a great deal of interest for micro hole drilling M/C. Quite a few research work is performed on micro drilling on domestic basis compared with the tendency of analyzing cutting mechanism, adaptive control, monitoring of generally available drills of diameter greater than 1mm. This study adresses the design, manufacturing and controlling a micro hole drilling M/C with the overload detection instrument and the step feed mechanism. Controlling and monitoring of the drilling process are acomplished on PC basis for more user interfaces and effectiveness. The test machine of the results of this research shows a good foundation for extending further micro hole machining technique.

  • PDF

Micro-factory Evaluation through Digital Assembly Simulation (디지털 조립 시뮬레이션에 의한 초소형 공작기계 평가)

  • Choi, Sung-Il;Jung, Young-Sang;Subramaniyam, Murali;Jang, Seok-Ho;Song, Joon-Yub;Park, Sang-Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.78-83
    • /
    • 2007
  • In this paper, the digital model of the micro-factory has been established, inspected and evaluated by progress of assembly, manipulation and examination. The new paradigm of the system analysis is realized by digital simulation of the factory. The digital manufacturing system of the micro-factory was simulated through UML(Unified Modeling Language) with the object-oriented logical model analysis method and then the micro lens module assembly system was simulated with MST(Micro System Technology) Application Module.