• 제목/요약/키워드: Micro-Machine

검색결과 735건 처리시간 0.026초

초정밀 공작기계를 이용한 미소부품의 가공특성 (Machining Characteristics of Micro-parts using the Ultra-precision Machine Tools)

  • 이재종;이응숙;제태진;이선우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.858-861
    • /
    • 2001
  • As the application fields of micro parts that are micro endo-scope, PDA, and tele-communication had been extended, there are required the micro machine tools and MEMS in order to machining for those parts. In order to machining of the micro parts, the micro machining center is very effective. The micro machining center had some advantages that are lower cost, higher accuracy, and lower required powers than existing machine tools for machining of micro parts. In this study, in order to analyze the machining characteristics and its application possibility of the developing micro machining center with 60,000rpm rotations, 0.1$\mu\textrm{m}$ resolutions, and 80 50 50mm sliding unit, the machining experiment had been executed. In this experimental machining, 0.1~ 0.5mm endmills are used to machining the micro cap and tele-communication's parts. In the future, experimental results will be adapted to the micro-machining center.

  • PDF

미세 축ㆍ구멍 가공을 위한 미세방전가공기의 개발 (Development of Micro-EDM Machine for Microshaft and Microhole Machining)

  • 김규만;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.55-61
    • /
    • 1998
  • Recently, the needs of machining technologies of very small parts have been increasing with advent of micro-revolution. These technologies have mostly used the method applied to semi-conductor production process such as LIGA, etc. But they have serious difficulties to settle down in terms of workpiece materials, machining thickness, 3-dimensional structure. Therefore. mciro-machining technology using EDM(Electrical Discharge Machining) was proposed. It is very difficult to machine the micro-parts (microshaft, microhole) using conventional machining. Micro-machining using BDM can machine the micro-parts easily because it requires little machining force. This MEDM(Micro-EDM) need the capabilities to move a electrode and control a discharge energy precisely, and the gap control strategy to maintain the optimal discharge condition is necessary. Therefore, in this study, the new EDM machine with high precision motion stage and high-performance EDM device was developed. Using this MEDM machine, we have machined microshaft and microhole with various shapes and sizes.

  • PDF

피에조 이송기구를 이용한 초소형 선반 (A Micro Turning Lathe Using Piezo Feed Driver)

  • 고태조;정종운;정병묵;김희술
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.151-158
    • /
    • 2005
  • Micro-machine tool is essential in the micro/meso cutting for the sake of saving of space, resources, and energy. In this research, a micro-turning lathe was fabricated with piezoelectric feed drive mechanism, and motion of each axis was generated by stepwise mechanism with two piezo actuators. The resolution to drive the axis was $0.05{\mu}m$ and position accuracy less than $2{\mu}m$ was assured. From the positioning experiment, piezo feed mechanism is good enough for the micro machine tools. Many fuming experiments were carried out with diamond-cutting tools to evaluate cutting capability of a machine tool. Continuous flow type chip could be obtained even if the cutting speed was very low due to small diameter of workpiece. However, thorough investigation about machineability in micro/meso cutting is inevitable to assure high quality surface roughness in micro machine tool.

미소가공을 위한 초정밀 밀링머신 설계에 관한 연구 (A Study on the Precision Milling Machine Design for Micro Machining)

  • 황준;지권구;정의식
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the results of miniaturized micro milling machine tool development for micro precision machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Design optimization has been performed to optimize the design variables of micro machine tool to minimize the volume, weight and deformation of machine tool structure and to maximize the stiffness in terms of static, dynamic, and thermal characteristics. This study presents the assessment of the technology incentive for the minimization of machine tool in the quantitative context of static, dynamic stiffness, thermal resistance and thus the accuracy implications. This study can also be provided a basic knowledge for further research of micro factory development.

  • PDF

전해 연속 드레싱을 이용한 마이크로 공구 제작 (A Study on the Micro Tool Fabrication using Electrolytic In-process Dressing)

  • 이현우;최헌종;이석우;최재영;정해도
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.171-178
    • /
    • 2002
  • With increasing the needs for micro and precision parts, micro machining technology using micro tools has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. Though these micro tools have developed rapidly, it is difficult to apply them to micro fabrication technologies, because of the inherent manufacturing. In this study, micro tools (WC) to produce micro structures and parts were manufactured by cylindrical grinding machine employing ELID (Electrolytic In-process Dressing) technique and the micro tools are fabricated as square shape with the dimension less than 100${\mu}{\textrm}{m}$. With the micro tools on the same machine, characteristics of micro grooving and drilling are evaluated. Also we compare normal micro machining with ultrasonic micro machining on the vibration table. It is confirmed that the developed micro tools are fully applicable to micro grooving, micro drilling and free form cutting.

초정밀 가공기 제작을 통한 미세가공에 관한 연구 (A Study of Micro Machining Using Ultra Precision Machine)

  • 김석원;김상기;정우섭;이채문;이득우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2004
  • In recent years, a demand for micro-structure machining is increasing by the development of information and optics industries. Micro machining technology is in general well known in the field of lithograghy. However, the requirement of producing micro machine and/or micro mechanism with metal materials will be increased since a variety of workpiece configurations can be easily made. In this paper, ultra precision machine is developed to obtain micro groove and mirror surface using single crystal diamond tool. According to the cutting experiment, no burr was found at the edge of V-grooves, and the surface roughness of copper is about 1~3nm Ra. It is verified that ultra precision machine is effective to high precision machining.

  • PDF

마이크로 밀링 머신의 저진동.경량화를 위한 구조 최적설계 (Structural Design Optimization of a Micro Milling Machine for Minimum Weight and Vibrations)

  • 장성현;권봉철;최영휴;박종권
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.103-109
    • /
    • 2009
  • This paper presents structural design optimization of a micro milling machine for minimum weight and compliance using a genetic algorithm with dynamic penalty function. The optimization procedure consists of two design stages, which are the static and dynamic design optimization stages. The design problem, in this study, is to find out thickness of structural members which minimize the weight, the static compliance and the dynamic compliance of the micro milling machine under several constraints such as dimensional constraints, maximum compliance limit, and safety factor criterion. Optimization results showed a great reduction in the static and dynamic compliances at the spindle nose of the micro milling machine in spite of a little decrease in the machine weight.

마이크로 금형 가공 및 사출성형에 관한 연구 (Micro Parts Machining and Injection Molding Technology)

  • 최두선;제태진;이응숙;신보성
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.452-457
    • /
    • 2003
  • As a fundamental study on developing elements with micro shape, micro mold parts machining and experiment of injection molding using it were performed. The ultra precision micro machining system with high functionality was fabricated, and utilized in the machining of micro parts. By using this machining system and micro end-mill tool, a micro circle column structure of high aspect ratio, diameter 60 $\mu\textrm{m}$, height 500 $\mu\textrm{m}$, was fabricated. And a micro lens molds were fabricated by using ball end-mill tool of 300 $\mu\textrm{m}$ diameter and diamond fly-cut tool of 150 $\mu\textrm{m}$ radius. A micro injection molding machine, which is clamping force 1.75 ton, injection capacity 2.8cc, was fabricated for injection molding experiment using micro molds. The injection molding experiment was performed by using the injection molding machine, micro cylinder structures and lens molds. This paper introduces these micro machining system and injection molding machine and demonstrates examples of injection molding using fabricated molds.

  • PDF

미소가공을 위한 마이크로 밀링머신 개발 (The Development of Micro Milling Machine for Micro Machining)

  • 황준
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.278-281
    • /
    • 2005
  • Today, manufacturing capability at the micro or nano scale production field is requested strongly in view of parts and product miniaturization. Miniaturized parts and products will introduce lots of benefits in terms of high precision functionality and low energy consumption. This paper presents the results of micro milling machine tool development for micro machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Performance evaluation through machining has been tested and discussed for achievable machining characteristics.

  • PDF

초정밀 사출성형 금형의 마이크로 홈가공과 전사성 (Study of transcription ability of optic polymer and Micro-grooving machining of ultra-precision injection molding moulds)

  • 곽태수;오오모리 히토시
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.623-624
    • /
    • 2005
  • Micro injection molding is a branch of micro system technology and has been under development for the mass manufacture of micro parts. Enhanced technological products like micro optical devices are entering the market. This paper presents fundamental research on the injection molding technique in micro fabrication. In order to successful manufacturing of micro plastic parts, it is necessary to research for development of micro-injection machine, machining of micro mold, decision of optimum injection conditions and the research for polymer material. Therefore in this study, in order to machining of micro mold, a mold core with microscopic V-shaped groove was tooled by ultra-precise tooling machine. The transcription experiments with a polymer, PMMA resin on the surface of core with Ni plating were carried out and surface profile of injected parts was measured with AFM.

  • PDF