• 제목/요약/키워드: Micro-Machine

검색결과 735건 처리시간 0.031초

마이크로 공구를 이용한 미세 구멍 가공기술 (Micro-hole Machining Technology for using Micro-tool)

  • 허남환;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1897-1901
    • /
    • 2003
  • Recently, with the development of semiconductor technology the miniaturization of products as well as parts and the products with high precision are being required. In addition as a national competitive power is increasingly effected by micro part development through micro machining and the secure of micro machining technology, the study of micro machining technology is being conducted in many countries. The goal of this study is to fabricate micro tool under the size of 30$\mu\textrm{m}$ and machine micro holes through micro tool fabrication by grinding, the application of ELID to grinding wheel and the measurement of surface roughness for micro tool.

  • PDF

표면 거칠기에 따른 마이크로 채널의 유속에 관한 연구 (A Study on the Flow Velocity of Micro Channels Depending on Surface Roughness)

  • 박현기;김종민;홍민성
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.59-64
    • /
    • 2008
  • Micro machining can manufacture complex shapes with high accuracy. Especially, this enables wide application of micro technology in various fields. For example, micro channels allow fluid transfer, which is a widely used technology. Therefore, liquidity research of flow in micro channels and micro channel manufacturing with use of various materials and cutting conditions has very important meaning. In this study, to find out correlation between fluid velocity in micro channels and surface roughness, we manufactured micro channels using micro end-mill and dropped ethanol into micro channels. We compared several surface roughness and fluid velocity in micro channels that were created by various processing conditions. Finally, we found out relationship between fluid velocity and surface roughness in micro channels of different materials.

마이크로 박판 밸브 성형을 위한 마이크로 프레스 개발 (Development of Micro Press for Forming the Micro Thin Foil Valve)

  • 이혜진;이낙규;이형욱
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.166-171
    • /
    • 2007
  • In this paper Research development about a micro metal forming manufacturing system has been developed. A micro forming system has been achieved in Japan and it's developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. We set the development of the equipment including micro deep drawing, micro punching and micro restriking process to the goal. To achieve this goal, we set the application product to a micro thin foil valve which is used in the micro pump module. The compound die set has been designed and manufactured to make two step process. The material of thin foil valve is SUS-304 and its thickness is 50$\mu$m. We can get a good forming results from micro punching experiments in this paper.

Performance Analysis to Evaluate the Suitability of MicroVM with AI Applications for Edge Computing

  • Yunha Choi;Byungchul Tak
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.107-116
    • /
    • 2024
  • 본 논문에서는 엣지 컴퓨팅 환경에서 MicroVM의 AI 애플리케이션 수행 시 성능을 분석하고, 이것이 현재 사용되고 있는 컨테이너 기술과 전통적인 가상머신을 대체할 수 있는지 알아본다. 이를 위해 라즈베리파이 4에서 Docker 컨테이너, Firecracker MicroVM, KVM 가상머신 환경을 각각 구축하고 대표적인 AI 애플리케이션들을 실행하였다. 그리고 실험 환경별로 추론 시간, 총 CPU 사용량 및 추세, 파일 I/O 성능을 분석하였다. 실험 결과, MicroVM에서 AI 애플리케이션을 수행하였을 때 컨테이너와의 큰 성능 차이는 없었으며, 오히려 반복적인 애플리케이션 수행에서 평균적으로 안정적인 추론 시간을 확인할 수 있었다. 따라서, 본 연구를 통해 엣지 컴퓨팅 환경에서 컨테이너와 가상머신을 대체하여 MicroVM을 사용한 AI 애플리케이션 운용이 적합할 수 있다는 것을 확인하였다.

U - Machine

  • 김선호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.201-201
    • /
    • 2004
  • 200여 년 전 탄생한 기계는 전기 에너지를 동력으로 사용하게 되면서 근 발전의 전기를 이루었다. 2차 세계대전이 종료된 후 발명된 NC는 정밀가공 기술의 발전을 가져왔으며 마이프로세서 기술을 채용한 CNC는 가공기술 측면에서는 초정밀 초고속을 가능하게 하고, 운영기술 측면에서는 지능화 연구를 가능하게 하고, 관리기술 측면에서는 FMS, CIM과 같은 유연성 있는 가공 시스템의 구축을 가능하게 했다.(중략)

  • PDF

마이크로 광 조형 기술을 이용하여 미세 유체 시스템을 개발하기 위한 가상 조립 공정의 개발 (Development of Virtual Assembly Process for the Fabrication of Micro-fluidic Systems Using Micro-stereolithography Technology)

  • 강현욱;이인환;조동우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.304-309
    • /
    • 2004
  • As it is difficult to construct a micro-fluidic system composed of micro-mixers, micro-channels and/or micro-chambers in a single process, an assembly process is typically used. The assembling and bonding of micro-parts, however, introduces other problems. In this work, a virtual assembly process was developed that can be used to design various micro-fluidic systems before actual fabrication commences. In the process, the information required for the micro-stereolithography process is generated automatically. Consequently, complex micro-fluidic systems can be fabricated in a single process, thereby avoiding the need for additional assembly or bonding processes. Using the developed process, several examples were fabricated.

  • PDF

기계적 미세 가공 시스템 구성 및 응용 연구 (A Study on the Mechanical Micro Machining System set-up and Applications)

  • 제태진;이응숙;최두선;이선우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.934-937
    • /
    • 2001
  • It is well-known that the micro fabrication technology of micro parts are the high energy beam or silicon-based micro machining method such as LIGA Process, Laser machining, photolithography and etching technology. But, for fabricating complex 3-D structure it is better to use mechanical machining. This machining method by the mechanical machine tool with nanometer accuracy is getting attention in some field-especially micro optics machining such as grating, holographic lens, micro lens array, fresnel lens, encoder disk etc.. In this study, we survey the micro fabrication by mechanical cutting method and set up the mechanical micro machining system. And we carried out micro cutting experiments for micro parts with v-shape groove.

  • PDF

미세형상 가공을 위한 Micro Slot 가공에서의 공구변형에 의한 가공오차 보상 (Machining Error Compensation for Tool Deflection in Micro Slot-Cutting Processes for Fabrication of Micro Shapes)

  • 손종인;윤길상;서태일
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.121-127
    • /
    • 2008
  • Micro end-milling has been becoming an important machining process to manufacture a number of small products such as micro-devices, bio-chips, micro-patterns and so on. Despite the importance of micro end-milling, many related researches have given grand efforts to micro end-milling phenomenon, for example, micro end-milling mechanism, cutting force modeling and machinability. This paper strongly concerned actual problem, micro tool deflection, which causes excessive machining errors on the workpiece. To solve this problem, machining error prediction method was proposed through a series of test micro cutting and analysis of their SEM images. An iterative algorithm was applied in order to obtain corrected tool path which allows reducing machining errors in spite of tool deflection. Experiments are carried out to validate the proposed approaches. In result, remarkable error reduction could be obtained.