• Title/Summary/Keyword: Micro-Injection Molding

Search Result 179, Processing Time 0.025 seconds

Fabrication of a stamper and injection molding for micro pattern product (미세 패턴 제품 마스터 제작 및 성형 공정 기술 개발)

  • Yoo Y.E;Seo Y.H;Je T.J.;Choi D.S
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.216-219
    • /
    • 2005
  • In recent, LCD becomes one of the main display devices and expected to have quite good market share during the next couple of years. The demand for low cost and high performance, however, is becoming severe as the competition among other display devices like PDP, OLED increases. To satisfy this demand from market, we need to optimize the parts or modules of the LCD, reduce the number of the assemble and enhance the process for the high brightness and uniformity of the LCD. The LCD consists mainly of LCD panel and Backlight unit(BLU). BLU, which takes big portion of the cost for LCD, consists of light source, light guide panel and many kinds of functional film. Recently light guide panel or film for BLU has micro patterns on its surface and consequently to reduce the number of parts and enhace the brightness and its uniformity. In this study, some methodologies for the fabrication of the master/stamper and molding the light quide panel are introduced for 50um pitch of prizm patterned substrate. Mechanical machining process is adapted and optimized to fabricate micro patterned stamper using the micro cutting tool. Injection molding technology is also developed to obtain uniformly replicated micro patterned products.

  • PDF

Flow Phenomena in Micro-Channel Filling Process (I) - Flow Visualization Experiment - (마이크로 채널 충전 과정의 유동 현상(I) - 유동 가시화 실험 -)

  • Kim, Dong-Sung;Lee, Kwang-Cheol;Kwon, Tai-Hun;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1982-1988
    • /
    • 2002
  • Micro-injection molding and microfluidic devices with the help of MEMS technologies including the LIGA process are expected to play important roles in micro-system industries, in particular the bio-application industry, in the near future. Understanding fluid flows in micro-channels is important since micro-channels are typical geometry in various microfluidic devices and mold inserts for micro-injection molding. In the present study, Part 1, an experimental investigation has been carried out to understand the detailed flow phenomena in micro-channel filling process. Three sets of micro-channels of different thickness (40um,30um and 2011m) were fabricated using SU-8 on silicon wafer substrate. And a flow visualization system was developed to observe the filling flow into the micro-channels. Experimental flow observations are extensively made to find the effects of pressure, inertia force, viscous force and surface tension. A dimensional analysis for experimental results was carried out and several relationships A dimensionless parameters are obtained.

Innovations in Micro Metal Injection Molding Process by Lost Form Technology

  • Nishiyabu, Kazuaki;Kanoko, Yasuhiro;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.43-44
    • /
    • 2006
  • The production method of micro sacrificial plastic mold insert metal injection molding, namely ${\mu}-SPiMIM$ process has been proposed to solve specific problems involving the miniaturization of MIM. Two types of sacrificial plastic molds (SP-mold) with fine structures were used: 1) PMMA resist, 2) PMMA mold injected into Ni-electroform, which is a typical LIGA (${\underline{L}}ithographie-{\underline{G}}alvanoformung-{\underline{A}}bformung$) process. Stainless steel 316L feedstock was injection-molded into the SP-molds with multi-pillar structures. This study focused on the effects of metal particle size and processing conditions on the shrinkage, transcription and surface roughness of sintered parts.

  • PDF

Effect of Molding Conditions on Demolding Force During Injection Molding of Parts with Micro-features (미세 패턴 사출 성형에서의 이형력에 대한 성형 조건의 영향 평가)

  • Park, S.H.;Yoo, Y.E.;Lee, W.I.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.127-132
    • /
    • 2014
  • Micro/nano-injection molding is one of the main processing techniques for polymer micro-fabrication. Most of the difficulties encountered in polymer micro-molding are caused by the demolding, rather than the filling of molds. Therefore, studying the demolding process is vitally important for manufacturing polymer replicas. The most important parameters are the thermal stress, friction and adhesion forces, and mechanical strength of the resist. In this research, we determinedthe effects of the processing conditions on the ejection force for cases involving two common thermoplastic polymers. The results showed that the processing conditions noticeably influenced the ejection force.

Formation of barrier ribs for PDP by injection molding method

  • Choi, Hak-Nyun;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.388-390
    • /
    • 2003
  • Paste micro-injection molding process was applied for fabrication of barrier ribs of PDP in an attempt to reduce processing steps and materials loss during the processing. For the paste, a thermally curable one was used and for the mold, a polymeric soft mold was used. It was demonstrated that the micro-molding process can be used successfully in producing barrier ribs of PDP.

  • PDF

A study on the micro pattern replication difference in injection molding (사출성형시 미세패턴 전사성 차이에 관한 연구)

  • Kim, Tae-Hoon;Yoo, Yeong-Eun;Je, Tae-Jin;Park, Yeong-Woo;Roh, Seung- Hwan;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.48-53
    • /
    • 2008
  • We injection molded a thin type of plate and wedge type of plate with micro prizm patterns on its surface and investigated the fidelity of replication of the micro pattern depending on the process parameter such as mold temperature, melt temperature, injection rate or packing pressure. The size of the $90^{\circ}$ prizm pattern is $50{\mu}m$ and the size of the plate is about $335mm{\times}213mm$ and $400mm{\times}400mm$. The thicknesses are 2.6mm and 0.7mm at each edge of the wedge type of plate and 1mm at each edge of the thin type of plate. The fidelity of the replication turned out quite different according to the process parameters and location of the patterns on the plate. We measured the cavity pressure and temperature in real-time during the molding to analyze the effect of the local melt pressure and temperature on the micro pattern replication.

  • PDF

A study on the effect of binder properties on feedstock and micro powder injection molding process (마이크로 분말사출성형에서 바인더 물성이 피드스탁 및 성형공정에 미치는 영향에 관한 연구)

  • Lee, Won-sik;Kim, Yong-dae
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • The fabrication process of micro pattern structure with high precision and high aspect ratio using powder injection molding (PIM) is developed. In the PIM process, the metal powder is mixed with the binder systems and the mixture is injected into the metal mold. The injection molded green parts are debinded and sintered to reach final shape and properties. In this method, the optimization of physical properties such as fluidity and strength of the binder system is essential for perfect filling the high aspect ratio micro-pattern. For this purpose, the correlation between the properties of the binder system and feedstock and ${\mu}-PIM$ process was investigated, and a binder system with low viscosity at low temperature(about $110^{\circ}C$) and high strength after cooling was investigated and applied. Employing this process, high precision parts with line type micro pattern structure which has pattern size $160{\mu}m$ and aspect ratio more than 2 can be manufactured.

A Study of Surface Improvement for Automotive Part by Injection Mold of Electronic Heating (전류가열 사출금형에 의한 자동차 부품의 표면개선에 관한 연구)

  • Choi, Dong-Hyuk;Hwang, Hyun-Tae;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • The light-weight of the research and development materials is actively carried out by overseas automobile companies and technology development continues in Korea. For the sake of fuel efficiency, the development of lightweight technology by improving the manufacturing method has been very effective. Recently, to maximize the effects of light weight, automotive interior parts have been applied by the micro-cellular injection molding using supercritical fluids and we call the Mucell manufacturing. This technique causes a problem in the quality of the surface of the products, because the shooting cells are revealed as the surface layer of the products by forming micro cells at the center of the products during injection molding. To overcome these phenomenon, we increased the temperature of injection molding using joule heating until critical value. In this study, we have predicted the problem of Mucell injection molding through the finite element analysis as changed the temperature by joule heating. From the result of finite element analysis, we have determined the optimized process and made the injection mold included electric current heating system with Mucell manufacturing analyzed the surface characteristics of the injection product according to changing mold temperature.

An Experimental Study on the Replication Ratio of Micro Patterns considering the Thickness Change of Injection Molded Parts (사출성형품의 두께변화에 따른 마이크로 패턴의 전사율에 관한 실험적 연구)

  • Jeong, C.;Kim, J.D.;Kim, J.S.;Yoon, K.H.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.176-179
    • /
    • 2009
  • Injection molding is one of the most general manufacturing processes of polymers. The deformation of final molded parts occurs because of the change of temperature and pressure during injection molding process. The deformation of injection molded parts depends on many operational conditions, such as, melt temperature, injection speed, mold temperature, packing pressure, and the structure of mold. In the present paper, injection molding experiments were performed to find the process conditions to affect the average shrinkage in thickness direction and the replication ratio of fine patterns on the surface for the final injection-molded LGP samples. As a results, in the cases of PC(Polycarbonate), when the melt temperature was under $285^{\circ}C$, both average shrinkage and replication ratios were mainly influenced by packing pressure. However, the replication ratio was more influenced by melt temperature than packing pressure for the cases of higher melt temperature.

  • PDF