• 제목/요약/키워드: Micro-Crack

검색결과 505건 처리시간 0.029초

지역적 이진 특징과 적응 뉴로-퍼지 기반의 솔라 웨이퍼 표면 불량 검출 (Local Binary Feature and Adaptive Neuro-Fuzzy based Defect Detection in Solar Wafer Surface)

  • 고진석;임재열
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.57-61
    • /
    • 2013
  • This paper presents adaptive neuro-fuzzy inference based defect detection method for various defect types, such as micro-crack, fingerprint and contamination, in heterogeneously textured surface of polycrystalline solar wafers. Polycrystalline solar wafer consists of various crystals so the surface of solar wafer shows heterogeneously textures. Because of this property the visual inspection of defects is very difficult. In the proposed method, we use local binary feature and fuzzy reasoning for defect detection. Experimental results show that our proposed method achieves a detection rate of 80%~100%, a missing rate of 0%~20% and an over detection (overkill) rate of 9%~21%.

압전재료의 비선형 전기-기계적 거동: 구성방정식과 전산모사 (Nonlinear electromechanical behavior of piezoelectric materials: constitutive equations and numerical simulation)

  • 김상주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.453-460
    • /
    • 2002
  • Piezoelectric solids such as PZT and PLZT have been widely used as sensors or actuators for various smart structural systems. The main problem occurring in the applications is that a larger and larger actuation force is required to maximize the function of the system. This naturally leads to local concentrations of electric or stress fields near crack tips or geometric irregularities and thereby results in a nonlinear behavior of the system Hence, it becomes more important to Predict the nonlinear behavior of piezoelectric solids In this Paper we investigate the micro-mechanism of nonlinear behavior in piezoelectric materials and propose constitutive equations. The calculation results obtained from an associated finite element Program are shown to be qualitatively consistent with experiments.

  • PDF

AE기법에 의한 하이브리드 섬유보강 시멘트복합체의 압축파괴특성 평가 (Assessing Compressive Failure Characteristics of Hybrid Fiber Reinforced Cementitious Composites by Acoustic Emission)

  • 김선우;지상규;전수만;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.229-232
    • /
    • 2006
  • The HPFRCCs show that the multiple crack propagation, high tensile strength and ductility due to the interfacial bonding of the fibers to the cement matrix. Moreover, performance of cement composites varies according to type and weight contents of reinforcing fiber. and HPFRCCs with hybrid fiber have better performance than HPFRCCs with single fiber in damage tolerance. Total four cylindrical specimens were tested, and the main variables were the type and weight contents of fiber, which was polyvinylalchol (PVA), polyethylene (PE). In order to clarify effect of hybrid types on the characteristics of fracture and damage process in cement composites, AE method was performed to detect micro-cracking in HPFRCCs under cyclic compression. Loading conditions of the uniaxial compression test were monotonic and cyclic loading. And from AE parameter value, it is found that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cvcle.

  • PDF

PE 섬유와 강섬유를 사용한 하이브리드 HPFRCCs의 파괴특성 및 음향방출특성 (Acoustic Emission and Fracture Process of Hybrid HPFRCCs with Polyethylene Fiber and Steel Cord)

  • 김선우;전수만;김용철;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.253-256
    • /
    • 2006
  • The HPFRCCs show the multiple crack and damage tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For practical application, it is needed to investigate the fractural behavior and of HPFRCCs and understand the micro-mechanism of cement matrix with reinforcing fiber. The objectives of this paper are to examine the compressive behavior, fracture and damage process of HPFRCC by acoustic emission technique. Total four series were tested, and the main variables were the hybrid type, polyethylene (PE) and steel cord (SC), and fiber volume fraction. The damage progress by compressive behavior of the HPFRCCs is characteristic for the hybrid fiber type and volume fraction. And from acoustic emission (AE) parameter value, it is found that the second and third compressive load cycles resulted in successive decrease of the ring-down count rate as compared with the first compressive load cycle.

  • PDF

미세 균열 제거를 위한 2층 구조 초전도 전착 막의 제작 (Preparation of Double Layered Superconductor Films for Micro-crack Removal by EPD)

  • 소대화;전용우;박정철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.315-318
    • /
    • 2004
  • 초전도후막의 제작방법으로 전기영동전착법을 균일하고 치밀한 전착후막을 얻을 수 있는 공정기술로 2층 구조 또는 다층구조의 후막제조기술과 2중 전착기술을 개발 적용하였다. 전기영동전착법을 통한 YBCO초전도 후막제작공정에서 전착 시 발생되는 균열현상과 기공의 발생을 2중 전착을 통하여 최소화 시킬 수 있었으며 Ag보호막을 통한 외부의 물리적 변화에 따른 안정성을 확보하였다. 전기영동전착후막 표면안정화 기술 개선과 확보를 통하여 초전도 후막의 전기적 특성을 향상시킬 수 있을 것으로 판단되며 초전도 후막의 특성을 향상시킬 수 있는 여러 파라메터 중 후막표면의 미세균열현상과 기공현상을 억제할 수 있는 기술로 2중 전착 및 다층구조의 공정기술을 적용하여 기존의 공정에 비하여 매우 향상된 후막을 얻을 수 있었다.

  • PDF

성형작약탄용 구리라이너의 미세조직 제어연구 (The Study of Copper Liner Micro Structure Control for Shaped Charge)

  • 장수호;박경채;김영무
    • 한국군사과학기술학회지
    • /
    • 제14권6호
    • /
    • pp.1114-1120
    • /
    • 2011
  • Shaped Charge's penetration performance is depended on the shape of warhead and explosive, liner materials. The liner that manufactured to small homogeneous grain increase the penetration performance and decrease the deviation of penetration performance. This texture is obtained by forging process but, creating the process that remove crack and get small homogeneous grain is very hard. In this study, We success to get the homogeneous small grain texture through appling the most suitable process by DEFORM CODE analysis.

수소유기 균열된 APi-X80 강재의 파면 분석 (Analysis of Fracture Surface of API-X-80 Steel Failed by Hydrogen Induced Cracking)

  • 김마로;구다영;최용
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.124-124
    • /
    • 2015
  • Acoustic microscopy and scanning electron microscopy were applied to non-destructively evaluate the hydrogen-induced cracking of API X-80 steels and to find the initiation time of the crack. The API X-80 steel had the average grain size of about $4-10{\mu}m$. The hardness was reduced from 240 to 202 [Hv] after exposing in HIC environment for 2-days. Friction coefficient and wear loss were 0.745 and 0.392 mm, respectively. Empirical equation of corrosion potential and corrosion rate of the steel with HIC time in $5%NaCl-0.5%CH_3COOH$ at $25^{\circ}C$ were $Eh\;(up)=0.06^*t[day]+0.2951$, $Eh(down)=0.376^*t[day]+0.5938$, respectively. HIC grew with micro-size after 1-day exposure. The HIC tended to propagate on the surface with Al, Si, Ti, and Mn.

  • PDF

실린더형 패드와 평판 시험편간 프레팅 피로의 접촉폭 크기효과에 관한 평가 (Estimation on a Contact Size Effect in Fretting Fatigue Between Cylindrical Pad and Flat Specimen)

  • 김진광;조상봉
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.116-125
    • /
    • 2008
  • In general, fretting is a contact damage process due to micro-slip associated with small amplitude oscillatory movement between two surfaces in contact. Previous studies in fretting fatigue have observed a contact size effect related to contact width. The volume-averaging method of theoretically predicted contact stress fields was required to emulate experimental trends and to predict the observed contact size effects. This contact size effect is captured by the mean values of stresses and strains at the element integration points of FE model and two critical plane models (SWT, FS) in the present paper. It is shown that crack nucleation and fretting fatigue life can be predicted by the FE-based critical plane models.

고압하에서의 적층복합재의 기계적 거동에 대한 실험적 고찰 (Experimental Investigation on the Mechanial Behavior of Graphite/Epoxy Composites Under Hydrostatic Pressure)

  • 이경업;배국동
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2431-2435
    • /
    • 1996
  • In order to determine the effects of hydrostatic pressure on the mechanical behavior of graphite fiber reinforced composites, the modulus, fracture stress(maximum stress), and fracture strain of graphite/epoxy composites have been determined as a function of pressure. Composite specimens used in this study were 90-deg unidirectional and had a 60% fiber volume fraction. Compressive tests under five different pressure levels were conducted. The result showed the modulus measured from as initial slope of stress-strain curve increased bilinearly with pressure with a break at 200 MPa. It was also found that fracture stress and fracture strain increased in a linear fashion with pressure.

압자압입시험에 의한 이종재료 접합층의 계면인성 평가 (Evaluation of Apparent Interface Toughness of Composites Layers by Indentation Test)

  • 송준희;김학근;임재규
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2089-2095
    • /
    • 2002
  • Ceramic/metal composites have many attractive properties and great potential fur applications. Interfacial fracture properties of different layered composites are important in material integrity. Therefore, evaluation of fracture toughness at interface is required in essence. In this study, the mechanical characteristics for interface of ceramic/metal composites were investigated by indentation test of micro-hardness method. Apparent interfacial toughness of TBC system could be determined with a relation between the applied load and the length of the crack formed at the interface by indentation test.