• Title/Summary/Keyword: Micro-Cantilever

Search Result 135, Processing Time 0.034 seconds

Development of A New Micro-fabricated AFM Probe for the Measurement of Biomaterials by using the Precision Glass Bead Supply Unit (글래스비드 정밀공급기구에 의한 바이오재료평가용 AFM프로브의 개발)

  • Kweon, H.K.;Lin, J.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.30-36
    • /
    • 2014
  • Many different cells types have been found to be highly sensitive to mechanical force imposed by their surroundings. The cellular response to external mechanical forces has very important effects on numerous biological phenomena. In spite of its importance in biological processes, the cell adhesion force remains difficult to measure quantitatively at the cellular level. In this paper, to enhance quantitative measurements of cell adhesive interactions, a new attaching system and a method in which a glass bead can be attached to an AFM cantilever was designed and fabricated, and the degree of range displacement was controlled in the system. In an experiment, the movement of the stage in the attaching system and the attaching process were measured. The effectiveness of this system was confirmed as well in the experiment. In addition, through a commercial AFM system, the spring constant of the modified AFM probe could be measured.

Measurement on the Natural Frequency of a Laminated Cantilever Microbeam using a Laser Interferometer (레이저 간섭계를 이용한 적층 마이크로 외팔보의 고유진동수 측정)

  • Kim, Yun-Young;Han, Bong-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.17-21
    • /
    • 2018
  • The natural frequency of a laminated cantilever microbeam was studied in the present investigation. The microbeam was made of quartz on a silicon chip, and its top and bottom surfaces were coated with thin(~30nm) gold films. An ultrasonic testing platform was employed to resonate the microbeam, and its time domain signal was optically measured. The natural frequency was quantified through the fast Fourier transform of the waveform, and the result showed good agreement with a theoretical estimation from the classical beam theory. This study is expected to provide a dynamic evaluation technique for micro/nanoscale materials and micromechanical structures.

Evaluation of Elastic Properties for Nanoscale Coating Layers Using Ultrasonic Atomic Force Microscopy (초음파원자현미경을 이용한 나노스케일 박막 코팅층에 대한 탄성특성 평가)

  • Kwak, Dong Ryul;Cho, Seung Bum;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.475-480
    • /
    • 2015
  • Ultrasonic atomic force microscopy (Ultrasonic-AFM) has been used to investigate the elastic property of the ultra-thin coating layer in a thin-film system. The modified Hertzian theory was applied to predict the contact resonance frequency through accurate theoretical analysis of the dynamic characteristics of the cantilever. We coat 200 nm thick Aluminum and Titanium thin films on the substrate using the DC Magnetron sputtering method. The amplitude and phase of the contact resonance frequency of a vibrating cantilever varies in response to the local stiffness constant. Ultrasonic-AFM images were obtained using the variations in the elastic property of the materials. The morphology of the surface was clearly observed in the Ultrasonic-AFM images, but was barely visible in the topography. This research demonstrates that Ultrasonic-AFM is a promising technique for visualizing the distribution of local stiffness in the nano-scale thin coatings.

Design and Implementation of the Diseases Diagnosis System Using The Cantilever Micro-Arrays (박막 캔틸레버 어레이 센서를 이용한 질병 진단기 설계 및 구현)

  • Jung, Seung-Pyo;Choi, Jun-Kyu;Lee, Jung-Hoon;Park, Ju-Sung
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.52-57
    • /
    • 2015
  • The disease diagnosis system has been developed using the thin nitride(Si3N4) cantilever arrays which can measure the difference of capacitances between sensor and reference. The system consists of 32-bits RISC(Reduced Instruction Set Computer), RAM/Flash, bus, communication IP's, ADC(Analog Digital Converter) board, and LCD display. The marker selection method, which give us the good accuracy from reasonal numbers of markers, is suggested. The developed system has the resolution under 1fF and can detect 10nM concentration of Thrombin.

Highly Productive Process Technologies of Cantilever-type Microprobe Arrays for Wafer Level Chip Testing

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.63-66
    • /
    • 2013
  • This paper describes the highly productive process technologies of microprobe arrays, which were used for a probe card to test a Dynamic Random Access Memory (DRAM) chip with fine pitch pads. Cantilever-type microprobe arrays were fabricated using conventional micro-electro-mechanical system (MEMS) process technologies. Bonding material, gold-tin (Au-Sn) paste, was used to bond the Ni-Co alloy microprobes to the ceramic space transformer. The electrical and mechanical characteristics of a probe card with fabricated microprobes were measured by a conventional probe card tester. A probe card assembled with the fabricated microprobes showed good x-y alignment and planarity errors within ${\pm}5{\mu}m$ and ${\pm}10{\mu}m$, respectively. In addition, the average leakage current and contact resistance were approximately 1.04 nA and 0.054 ohm, respectively. The proposed highly productive microprobes can be applied to a MEMS probe card, to test a DRAM chip with fine pitch pads.

Analysis of Energy Conversion Efficiency in Micro Power Generation using Vibrating Piezoelectric Cantilever (압전빔의 진동을 이용한 마이크로 동력원의 에너지 변환 해석)

  • Lee, Heon-Ju;Chang, Young-Soo;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3365-3370
    • /
    • 2007
  • We developed micro power generation system using piezoelectric materials. In our system, the ambient vibrating energy is converting to electric energy by deflection of piezoelectric beams. The system consists of energy generating parts, converting enhancement parts, electric regulation and charging parts, and interface with small-energy-consuming mobile devices. The geometry of piezoelectric beams, the source of vibrating energy, and the electric load of target application determine the characteristics of generating electric power, such as impedance, voltage, current and power density. Therefore, we made a model for analysis of generating power with given information such as piezoelectric materials, geometry, vibration type, and mass. With this model, we can calculate capacitance of piezoelectric beams, generating voltage, current, and power. To obtain maximum energy transfer efficiency, we approached this study in the view of material, electrical, and mechanical engineering

  • PDF

Modeling And Analysis of a Piezoelectric Vibration-Induced Micro Power Generator (진동에 의한 압전 마이크로 발전기의 모델링 및 해석)

  • Kim, Joon-Hong;Park, Moon-Soo;Lee, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.741-745
    • /
    • 2007
  • Supplying power to microsystems that have no physical connection to the outside is difficult, and using batteries is not always appropriate. This paper discusses how to generate electricity from mechanical energy when vibrated in a cantilever beam. A model for the system predicts that the output power of the system is maximized when the mechanical damping in the system is minimized. Furthermore, to cover a wide frequency range and to be useful in a number of applications, a system of beams with different resonant frequencies has been designed and optimized. This information makes it possible to determine what design alternatives are feasible for the creation of a micro power supply for any specific application of MEMS.

  • PDF

Fabrication of a Micro actuator with p+ Si cantilevers for Optical Devices (p+ Si 외팔보 구조를 이용한 광학 소자용 마이크로 구동기)

  • Park, Tae-Gyu;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2236-2238
    • /
    • 2000
  • The paper represents the fabrication of an electrostatic micro actuator for optical devices. The micro actuator consists of a plate suspended four p+ silicon cantilevers and an electrode on a glass substrate. The cantilever curls down because of the residual stress gradient in p+ silicon. When input voltage is applied between the p+ cantilevers and the electrode. the cantilevers are pulled toward the electrode by the electrostatic force. The displacement of the plate is measured with a laser displacement meter for various input voltage and frequencies.

  • PDF

Fabrication and characteristics of polycrystalline SiC micro resonators (다결정 SiC 마이크로 공진기의 제작과 그 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.425-428
    • /
    • 2008
  • This paper describes the resonant characteristics of polycrystalline SiC micro resonators. The $1{\mu}m$ thick polycrystalline 3C-SiC cantilevers with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at room temperature. For the $100{\sim}40{\mu}m$ long cantilevers, the fundamental frequency appeared at $147.2kHz{\sim}856.3kHz$. The $100{\mu}m$ and $80{\mu}m$ long cantilevers have second mode resonant frequency at 857.5.kHz and 1.14.MHz, respectively. Therefore, polycrystalline 3C-SiC resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

Characteristics of corrugated polycrystalline 3C-SiC resonators (주름진 다결정 3C-SiC 공진기의 특성)

  • Nhan, Duong The;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.251-251
    • /
    • 2008
  • In this work, appropriate corrugated structure is suggested to increase resonant frequency of resonators. Micro beam resonators based on polycrystalline 3C-SiC films which have a two-side corrugation along the length of beams were simulated by finite element method and compared to a same - size flat rectangular. With the dimension of $36\times12\times0.5{\mu}m^3$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, with this size only corrugation width of $6{\mu}m$ and depth of $0.4{\mu}m$, the corrugated cantilever reaches the resonant frequency at 1.252 MHz, and is 68% larger than that of flat type.

  • PDF