• Title/Summary/Keyword: Micro-Bubble

Search Result 196, Processing Time 0.023 seconds

미세기포를 이용한 역삼투 모듈 세정 효율 평가 (Evaluation of Cleaning Efficiency of Reverse Osmosis Module Using Micro-bubble)

  • 김동진;강신경;조하영;이재우;문일식
    • 멤브레인
    • /
    • 제27권1호
    • /
    • pp.104-107
    • /
    • 2017
  • 역삼투막 운영에 있어서 유기물 오염에 대한 문제들을 해결하기 위해 많은 연구를 하고 있다. 현재 가성소다(NaOH)를 사용하여 유기물 오염 제거를 하고 있다. 본 연구는 지속적인 막오염 증가 문제를 해결하기 위한 물리/화학적 세정 기법으로서 기존에 사용하던 가성소다와 Micro-bubble를 이용하여 유기물 오염 제거 실험을 수행되었다. 멤브레인 강제 오염을 위해 Humic acid sodium, Bovine serum albumin, Sodium alginate 약품을 사용하여 유기물 오염을 시켰다. 유기물 오염에 따른 Flux를 관찰하였고, 가성소다와 Micro-bubble를 이용한 유기물 오염 제거 실험은 가성소다로만 사용했을 때보다 향상된 것을 관찰했다.

열 기포에 의한 고체 박막의 변형 해석 (Deflection of a Thin Solid Structure by a Thermal Bubble)

  • 김호영;이윤표
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.236-242
    • /
    • 2003
  • Thermal bubbles find their diverse application areas in the MEMS (MicroElectroMechanial Systems) technology, including bubble jet printers, microactuators, micropumps, etc.. Especially, microactuators and micropumps, which use a microbubble growing by a controlled heat input, frequently involve mechanical and thermal interaction of the bubble with a solid structure, such as a cantilever beam and a membrane. Although the concept is experimentally verified that an internal pressure of the bubble can build up high enough to deflect a thin solid plate or a beam, the physics of the entire process have not yet been thoroughly explored. This work reports the experimental study of the growth of a thermal bubble while deflecting a thin cantilever beam. A physical model is presented to predict the elastic response of the cantilever beam based on the experimental measurements. The scaling law constructed through this work can provide a design guide for micro- and nano-systems that employ a thermal bubble for their actuation/pumping mechanism.

시간에 따른 압력변화에 대한 마이크로 기포의 동적 반응 (Dynamics Response of a Micro Bubble under Temporal Pressure Variations)

  • 이우민;이승현;성재용;이명호
    • 한국가시화정보학회지
    • /
    • 제12권1호
    • /
    • pp.13-17
    • /
    • 2014
  • The growth of micro bubble has been simulated under the variation of ambient pressure. The Rayleigh-Plesset equation governs the dynamic growth and collapse of a bubble according to pressure and temperature conditions. The Rayleigh-Plesset equation was solved by 4th-order Runge-Kutta method for wide range of pressure variations. As numerical parameters, the pressure difference between initial and final pressures, and the temporal pressure gradient are changed. The results show that the pressure difference has little effect on the growth rate of the micro bubble in the inertia controlled growth region. On the other hand, the growth rate increases linearly with the increase of the pressure gradient.

치아 근관 세척용 마이크로 기포 세정 시스템 개발 및 성능평가 (Development and performance test of a micro bubble irrigation system for root canal cleaning of tooth)

  • 성길환;성재용;이명호
    • 한국가시화정보학회지
    • /
    • 제14권1호
    • /
    • pp.40-45
    • /
    • 2016
  • Elimination of the smear layer and bacteria in the root canal is the most important in the endodontic treatment, and various irrigation devices have been developed. Nevertheless, it is hard to eliminate the smear layer and bacteria completely. In this paper, a micro bubble irrigation system has been developed for the root canal cleaning of tooth. Micro bubbles are generated when pressurized fluids passing through a porous material inside a hand-piece nozzle, and the bubbly flows excited by ultrasonic vibration are observed using a high-speed camera and a microscope. The results show that the diameter and number of bubbles increases with the applied pressure, and there found an optimum excitation frequency in order to minimize the bubble size. From in-vitro tests, it is also verified that the developed bubble irrigation system has the ability of antibacterial and infection removal. Thus, this biocompatible system would be well suited for root canal cleaning.

전기분해(電氣分解)시 알루미늄 극판(極板)에서 발생(發生)한 미세기포(微細氣泡)의 제타전위(電位) 측정(測定) (Zeta Potential Measurement of Micro Bubbles Generated by Electrolysis)

  • 김원태;한무영;이성우;한이선
    • 상하수도학회지
    • /
    • 제14권4호
    • /
    • pp.343-349
    • /
    • 2000
  • Techniques such as dissolved air flotation and electroflotation, which utilize micro bubbles, are increasingly used for water and wastewater treatment. Most studies have concentrated on particle characteristics. Pretreatments that manipulate particle size and zeta potential were considered important. A recent study, which modeled the collision mechanism between micro bubbles and particles in dissolved air flotation, suggested bubble characteristics should also be important. Hydrogen micro bubbles were generated electrolytically and their zeta potentials measured under various conditions using a novel electrophoresis method. Effects of several parameters were investigated. Bubble zeta potentials were found to be pH dependent, and to have a negative value around neutral pH, becoming zero or positive at lower pH. The pH at zero zeta potential was 5.0 under study conditions. Using artificial solution and tap water, at fixed pH, bubble zeta potentials varied with solution composition. Zeta potentia]s of bubbles were affected by the types of cations and anions in solution but not by the voltage applied. These findings will help improve efficiencies of particle removal processes that utilize micro bubbles. As bubble zeta potential varies with solution composition, it needs to be measured for each composition to understand those effects, which increase removal efficiency.

  • PDF

고체의 전도를 포함한 기포성장의 복합적 해석 (Conjugate Analysis of Bubble Growth Involving Conduction in Solid)

  • 손기헌
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.265-273
    • /
    • 2003
  • Numerical analysis of bubble motion during nucleate boiling is performed by imposing a constant heat flux condition at the base of a heater which occurs in most of boiling experiments. The temporal and spatial variation of a solid surface temperature associated with the bubble growth and departure is investigated by solving a conjugate problem involving conduction in the solid. The vapor-liquid interface is tracked by a level set method which is modified to include the effects of phase change at the interface, contact angle at the wall and evaporative heat flux in a thin liquid micro-layer. Based on the numerical results, the bubble growth pattern and its interaction with the heating solid are discussed. Also, the effect of heating condition on the bubble growth under a micro-gravity condition is investigated.

Vapor Bubble Nucleation : A Microscopic Phenomenon

  • Kwak, Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1271-1287
    • /
    • 2004
  • In this article, vapor bubble nucleation in liquid and the evaporation process of a liquid droplet at its superheat limit were discussed from the viewpoint of molecular clustering (molecular cluster model for bubble nucleation). For the vapor bubble formation, the energy barrier against bubble nucleation was estimated by the molecular interaction due to the London dispersion force. Bubble nucleation by quantum tunneling in liquid helium under negative pressure near the absolute zero temperature and bubble nucleation on cavity free micro heaters were also presented as the homogenous nucleation processes.

Numerical simulation of bubble growth and liquid flow in a bubble jet micro actuator

  • Ko, Sang-Cheol;Park, Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1232-1236
    • /
    • 2014
  • Numerical models of fluid dynamics inside the micro actuator chamber and nozzle are presented. The models include ink flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill process. Since high tapered nozzle is one of the very important parameters for overall actuator performance design. The effects of variations of nozzle thickness, diameter, and taper angles are simulated and some results are compared with the experimental results. It is found that the ink droplet ejection through the thinner and high tapered nozzle is more steady, fast, and robust.

마이크로버블이 유화처리 정제유지류(ERCO)혼입 고로슬래그 다량 치환 콘크리트의 특성에 미치는 영향 (Effect of Micro Bubble on the High-Voiume Slag Concrete Mixed with Emulsified Refined Cooking Oil)

  • 김민영;박용준;백두환;백병훈;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.44-45
    • /
    • 2015
  • Although the carbonation problem of high-volume slag concrete has been solved by the mixed use of emulsified refine cooling oil as the pilot study, there was an instance of securing air quantity and frost resistance followed by the use of Expancel due to the problem of having vulnerability in frost resistance in result as the air quantity has not been secured. But due to the problem of Expancel not being economical, air quantity and frost resistance of high-volume slag concrete mixed with ERCO are attempted to be secured using micro bubble that can remain in the water for a long time as a relatively economical and very microscopic bubble.

  • PDF

하우스 종묘삼 재배에서 마이크로 버블(Micro bubble) 사용이 생육에 미치는 영향과 고품질 인삼 가공의 가능성 (Effect of Micro Bubble on Growth of Ginseng in the shaded plastic houses and Possibility of High Quality Ginseng processing)

  • 안철현
    • 현장농수산연구지
    • /
    • 제19권1호
    • /
    • pp.109-117
    • /
    • 2017
  • 아직까지 많이 알려지지 않은 마이크로버블을 사용하여 우리나라 대표 작물인 인삼재배에 적용하였다. 고년근에 적용하여 결과를 확인하기 위해서는 비용과 시간 소요가 많아 종묘삼을 활용하여 생리적 변화를 측정하고 분석하였다. 최근 뿌리 작물에 기능성이 있다는 산소수 일반 재배농가에서 사용해보았지만 그 결과가 미미하고 오히려 해를 입는 경우도 생기게 되었다. 다른 작물의 선행결과와 본 연구결과를 볼 때 마이크로 버블을 사용한 인삼재배는 파급효과 있을 것으로 사료된다. 중화제 및 약제를 활용하여 만든 산소수와는 다른 개념으로 마이크로 버블은 공급 장치를 통해 우리가 이용하는 공기를 아주 작은 버블로 압축하여 인삼에 제공함으로써 저해 없이 특이성 성장을 이끌어 내었다. 연구결과로부터 설정된 종묘삼의 생장 특성 및 세분화별 적정범위 및 적정치를 결과와 비교하면, 그동안 이루어졌던 관행농법에서 사용되는 일반수와 마이크로 버블(Micro bubble)수를 사용하여 재배한 결과는 10%에서 15%의 인삼생장을 나타내었다. 이후로 마이크로 버블수를 생산할 때 시간별 용존 산소량을 측정하여 마이크로 발생장치의 최적 시간을 설정하고 최적화 설정을 위해서는 관계시간과 에너지 효율 및 토양의 영양환경에 대한 변화에 대해서도 더욱 많은 연구가 필요하고 사료되며, 더불어 생체 및 중량이 증가된 만큼 인삼의 주요 성분인 진세노사이드의 증감에 대한 분석 등 추가 연구가 활발하게 이루어져야 할 것이다.