• 제목/요약/키워드: Micro- and nano-powder synthesis

검색결과 12건 처리시간 0.029초

Numerical Modeling of Nano-powder Synthesis in a Radio-Frequency Inductively Coupled Plasma Torch

  • Hur, Min Young;Lee, Donggeun;Yang, Sangsun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • 제27권1호
    • /
    • pp.14-18
    • /
    • 2018
  • In order to understand the mechanism of the synthesis of particles using a plasma torch, it is necessary to understand the reaction mechanisms using a computer simulation. In this study, we have developed a simulation method to combine the Lagrangian scheme to follow microparticles and a nodal method to treat nanoparticles categorized with different particle sizes. The Lagrangian scheme includes the Coulomb force which affects the dynamics of larger particles. In contrast, the nodal method is adequate for the nanoparticles because the charge effect is negligible for nanoparticles but the number of nanoparticles is much larger than that of microparticles. This method is helpful to understand the dynamics and growth mechanism of micro- and nano-powder mixture observed in the experiment.

Synthesis and Densification of Nanostructured $Al_2O_3-(Zro_2+3%Mol\;Y_2O_3)$ Bioceramics by High-Frequency Induction Heat Sintering

  • Kim, Sug-Won;Khalil, Khalil Abdel-razek
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.527-528
    • /
    • 2006
  • Nanostructured Alumina - 20 vol% 3YSZ composites powder were synthesized by wet-milling technique. The starting materials were a mixture of Alumina micro-powder and 3YSZ nano-powders. Nano-crystalline grains were obtained after 24 h milling time. The nano-structured powder compacts were then processed to full density at different temperatures by high-frequency induction heat sintering (HFIHS). Effects of temperature on the mechanical and microstructure properties have been studied. $Al_2O_3-3YSZ$ composites with higher mechanical properties and small grain size were successfully developed at relatively low temperatures through this technique.

  • PDF

Cu계 및 Ni계 비정질 합금 분말을 이용한 비정질기지 복합재의 제조 및 특성 (Synthesis and Properties of Amorphous Matrix Composites using Cu-based/Ni-based Amorphous Powders)

  • 김택수;이진규;김휘준;배정찬
    • 한국분말재료학회지
    • /
    • 제12권6호
    • /
    • pp.406-412
    • /
    • 2005
  • This work is to present a new synthesis of metallic glass (MG)/metallic glass (MG) composites using gas atomization and spark plasma sintering (SPS) processes. The MG powders of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ (CuA) and $Ni_{59}Zr_{15}Ti_{13}Nb_7Si_3Sn_2Al_1$(NiA) as atomized consist of fully amorphous phases and present a different thermal behavior; $T_g$ (glass transition temperature) and $T_x$ (crystallization temperature) are 716K and 765K for the Cu base powder, but 836K and 890K for the Ni base ones, respectively. SPS process was used to consolidate the mixture of each amorphous powder, being $CuA/10\%NiA\;and\;NiA/10\%CuA$ in weight. The resultant phases were Cu crystalline dispersed NiA matrix composites as well as NiA phase dispersed CuA matrix composites, depending on the SPS temperatures. Effect of the second phases embedded in the MG matrix was discussed on the micro-structure and mechanical properties.

고주파 열플라즈마 토치를 이용한 Ni 금속 입자의 나노화 공정에 대한 전산해석 연구 (Numerical Analysis on RF (Radio-frequency) Thermal Plasma Synthesis of Nano-sized Ni Metal)

  • 남준석;홍봉근;서준호
    • 한국전기전자재료학회논문지
    • /
    • 제26권5호
    • /
    • pp.401-409
    • /
    • 2013
  • Numerical analysis on RF (Radio-Frequency) thermal plasma treatment of micro-sized Ni metal was carried out to understand the synthesis mechanism of nano-sized Ni powder by RF thermal plasma. For this purpose, the behaviors of Ni metal particles injected into RF plasma torch were investigated according to their diameters ($1{\sim}100{\mu}m$), RF input power (6 ~ 12 kW) and the flow rates of carrier gases (2 and 5 slpm). From the numerical results, it is predicted firstly that the velocities of carrier gases need to be minimized because the strong injection of carrier gas can cool down the central column of RF thermal plasma significantly, which is used as a main path for RF thermal plasma treatment of micro-sized Ni metal. In addition, the residence time of the injected particles in the high temperature region of RF thermal plasma is found to be also reduced in proportion to the flow rate of the carrier gas In spite of these effects of carrier gas velocities, however, calculation results show that a Ni metal particle even with the diameter of $100{\mu}m$ can be completely evaporated at relatively low power level of 10 kW during its flight of RF thermal plasma torch (< 10 ms) due to the relatively low melting point and high thermal conductivity. Based on these observations, nano-sized Ni metal powders are expected to be produced efficiently by a simple treatment of micro-sized Ni metal using RF thermal plasmas.

Facile Synthesis of Hydroxyapatite by Hydrothermal and Solvent Combustion Methods

  • Bramhe, Sachin N;Lee, Hyun Chul;Chu, Min Cheol;Ryu, Jae-Kyung;Balakrishnan, Avinash;Kim, Taik Nam
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.492-496
    • /
    • 2015
  • Hydroxyapatite (HA), which is an important calcium phosphate mineral, has been applied in orthopedics, dentistry, and many other fields depending upon its morphology. HA can be synthesized with different morphologies through controlling the synthesis method and several parameters. Here, we synthesize various morphologies of HA using two simple methods: hydrothermal combustion and solution combustion. The phase purity of the synthesized HA is confirmed using X-ray diffractometry. It demonstrates that pure phased hydroxyapatite can be synthesized using both methods. The morphology of the synthesized powder is examined using scanning electron microscopy. The effects of pH and temperature on the final powder are also investigated. At $140^{\circ}C$, using the hydrothermal method, nano-micro HA rods with a hexagonal crystal structure can be synthesized, whereas using solution combustion method at $600^{\circ}C$, a dense cubic morphology can be synthesized, which exhibits monoclinic crystal structures.

탄소나노튜브 합성 시 촉매 금속의 분산도 향상을 위한 Ti Substrate의 표면 개질 연구 (Study on Surface Modification of Ti Substrate to Improve the Dispersion of Catalytic Metals on Synthesis of Carbon Nanotubes)

  • 곽성열;김호규;변종민;박주혁;석명진;오승탁;김영도
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.28-33
    • /
    • 2014
  • This paper describes the surface modification effect of a Ti substrate for improved dispersibility of the catalytic metal. Etching of a pure titanium substrate was conducted in 50% $H_2SO_4$, $50^{\circ}C$ for 1 h-12 h to observe the surface roughness as a function of the etching time. At 1 h, the grain boundaries were obvious and the crystal grains were distinguishable. The grain surface showed micro-porosities owing to the formation of micro-pits less than $1{\mu}m$ in diameter. The depths of the grain boundary and micro-pits appear to increase with etching time. After synthesizing the catalytic metal and growing the carbon nano tube (CNT) on Ti substrate with varying surface roughness, the distribution trends of the catalytic metal and grown CNT on Ti substrate are discussed from a micro-structural perspective.

하이브리드 Ti2AlC 세라믹 소결체의 재료특성 및 Micro-EDM 유용성 연구 (Micro-EDM Feasibility and Material Properties of Hybrid Ti2AlC Ceramic Bulk Materials)

  • 정국현;김광호;강명창
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.301-306
    • /
    • 2014
  • Titanium alloys are extensively used in high-temperature applications due to their excellent high strength and corrosion resistance properties. However, titanium alloys are problematic because they tend to be extremely difficult-to-cut material. In this paper, the powder synthesis, spark plasma sintering (SPS), bulk material characteristics and machinability test of hybrid $Ti_2AlC$ ceramic bulk materials were systematically examined. The bulk samples mainly consisted of $Ti_2AlC$ materials with density close to theoretical value were synthesized by a SPS method. Random orientation and good crystallization of the $Ti_2AlC$ was observed at $1100^{\circ}C$ for 10 min under SPS sintering conditions. Scanning electron microscopy results indicated a homogeneous distribution and nano-laminated structure of $Ti_2AlC$ MAX phase. The hardness and electrical conductivity of $Ti_2AlC$ were higher than that of Ti 6242 alloy at sintering temperature of $1000^{\circ}C{\sim}1100^{\circ}C$. Consequently, the machinability of the hybrid $Ti_2AlC$ bulk materials is better than that of the Ti 6242 alloy for micro-EDM process of micro-hole shape workpiece.

Synthesis of Nano-Sized Y3Al5O12:Ce3+ Phosphors Prepared by High Energy Beads Milling Process and Their Luminescence Properties

  • Song, Hee-Jo;Kim, Dong-Hoe;Park, Jong-Hoon;Han, Byung-Suh;Hong, Kug-Sun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.386-386
    • /
    • 2012
  • For white light emitting diode (LED) applications, it has been reported that Y3Al5O12:Ce3+ (YAG:Ce) in nano-sized phosphor performs better than it does in micro-sized particles. This is because nano-sized YAG:Ce can reduce internal light scattering when coated onto a blue LED surface. Recently, there have been many reports on the synthesis of nano-sized YAG particles using bottom-up method, such as co-precipitation method, sol-gel process, hydrothermal method, solvothermal method, and glycothermal method. However, there has been no report using top-down method. Top-down method has advantages than bottom-up method, such as large scale production and easy control of doping concentration and particle size. Therefore, in this study, nano-sized YAG:Ce phosphors were synthesized by a high energy beads milling process with varying beads size, milling time and milling steps. The beads milling process was performed by Laboratory Mill MINICER with ZrO2 beads. The phase identity and morphology of nano-sized YAG:Ce were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. By controlling beads size, milling time and milling steps, we synthesized a size-tunable and uniform nano-sized YAG:Ce phosphors which average diameters were 100, 85 and 40 nm, respectively. After milling, there was no impurity and all of the peaks were in good agreement with YAG (JCPDS No. 33-0040). Luminescence and quantum efficiency (QE) of nano-sized YAG:Ce phosphors were measured by fluorescence spectrometer and QE measuring instrument, respectively. The synthesized YAG:Ce absorbed light efficiently in the visible region of 400-500 nm, and showed single broadband emission peaked at 550 nm with 50% of QE. As a result, by considering above results, high energy beads milling process could be a facile and reproducible synthesis method for nano-sized YAG:Ce phosphors.

  • PDF

Mechanical Alloying Method로 제조된 고온수전해용 Ni/YSZ cermet의 제조 및 특성 (Synthesis and Characteristic of Ni/VSZ Cermet for High Temperature Electrolysis Prepared by Mechanical Alloying Method)

  • 채의석;홍현선;추수태
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.372-378
    • /
    • 2005
  • Ni/YSZ ($Y_2O_3$-stabilized $ZrO_2$) composite powder for a cathode material in high temperature electrolysis(HTE) was synthesized by a mechanical alloying method with Ni and YSZ powder. Microstructure of the composite and cell thickness for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. Employing the composite material, furthermore, the unit cell for HTE has been studied to evolve hydrogen from water. XRD patterns showed that the composites after wet mechanical alloying were composed of respective nano-sized crystalline Ni and YSZ. While ethanol as additive for mechanical alloying increased to $20\;{\mu}m$ of average particle size of the composites, alpha-terpineol effectively decreased to sub-micro size of that. This study has been found out the evolution of hydrogen by HTE reaction employing the fabricated cathode material, showing 1.4 ml/min of $H_2$ generation rate as increasing $20\;{\mu}m$ of cathode thickness.

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • 대한화학회지
    • /
    • 제63권6호
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.