• Title/Summary/Keyword: Micro strength

Search Result 1,209, Processing Time 0.028 seconds

AE Characteristics of Fatigue Crack Opening and Closure in Structural Aluminum Alloy (구조용 알루미늄 합금에서의 피로균열 열림 및 닫힘 시 AE 발생특성 연구)

  • Jeong, Jung-Chae;Park, Phi-Lip;Kim, Ki-Bok;Lee, Seung-Seok;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.155-169
    • /
    • 2002
  • The objective of this study was to investigate the effect of crack opening and closure in the AE activities during fatigue test. Laboratory experiment using various materials and test conditions were carried out to identify AE characteristics of fatigue crack propagation. Compact tension specimens of 2024-T4 and 6061-T6 aluminum alloy were prepared for fatigue test. AE activities were analyzed based on the phase of the loading cycle. Generally, most of AE were generated when the crack begins' opening and the crack closes fully, whereas a few in the pull opening of the crack. Also AE activity in the peak loading of cycle was different with each specimen. However, in the same material, AE activity was not affected by the change of cyclic frequency (0.1, 0.2, 1.0Hz). It was found that AE activities during crack opening and closure depend on material properties such as micro-structure, tensile strength and yield strength.

A Study on the Compression Characteristics of Decomposed Granite Soil Based on Single Particle Crushing Property (단입자파쇄특성에 기초한 화강풍화토의 압축특성에 관한 연구)

  • 함태규;조용성;김유성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.103-111
    • /
    • 2004
  • There are some problems in evaluating the bearing capacity of decomposed granite soils by general equations on account of their inherent compressibility and crushability. In order to investigate this kind of the engineering characteristics on decomposed granite soils in detail, it is necessary to how the micro property of the single particle composing the granite soils, and then the relevance to the macro characteristics of the soils has to be cleared. The reason why the single particle properties are not studied is first the difficulty to find out some regulating parameters, and secondly little understanding of its significance. Furthermore, the water in the decomposed granite soils accelerates the particle crushing. Consequently, increasing of compressibility and decreasing of shear strength would occur. Actually, when the ground settlement is a big issue in the embanked ground using the decomposed granite soils, the sensitive change of compressibility due to the change of water content in the ground becomes conspicuous. In this study, the single particle strength characteristics are studied and microscopic particle shape analyses are performed. In addition the compressibility of the decomposed granite soils and water content effect on the compressibility are analysed based on the test results.

Micropropagation of Juvenile and mature Trees of Sawtooth Oak (Quercus acutissima C.) (상수리나무 유목(幼木)과 성숙목(成熟木)의 기내번식(器內繁殖))

  • Moon, Heung Kyu;Youn, Yang;Yi, Jae Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.391-398
    • /
    • 1997
  • Present study describes a method on the application of efficient tissue culture systems for the micro-propagation of juvenile and mature sawtooth oak(Quercus acutissima). Nodal segments with axillary buds were used as initial explant sources. WPM(Woody Plant Medium) was the best in growth and proliferation of shoot among the media tested. Although the single effect of zeatin revealed on two dorminant shoot elongation with normal growth until the elevation of levels up to 3.0mg/l, BAP($N^6$-benzyl amino purine) usually showed better response than zeatin on shoot multiplication and/or elongation. In addition, the incorporation of BAP and zeatin onto the culture media represents more effectiveness in shoot proliferation and its growth. Optimum concentrations of BAP and zeatin were 0.5 and 0.05~1.0mg/l, respectively. Ninety percent of the proliferated shoots was rooted on half-strength GD (Gresshoff and Doy, 1972) medium containing 0.5mg/l IBA(indole butyric acid) in 4 weeks after culture. More than 70% of the rooted plantlets survived after 5 months of transplanting into artificial soil mix containing equal amount of peatmoss and perlite. Among 27 plus tree clones which were grafted twice onto the juvenile rootstocks, only 4 clones revealed the possibility for shoot multiplication through tissue culture system. The capacity for the micropropagation using mature explant sources was highly depended on clonal differences compared with those of octet age. More than 90% of rooting ratio was obtained from the best responding clone. Among the 7 rooting media tested, GD medium was the best far rooting. The most effective rooting was obtained on half-strength GD medium containing 0.2 to 2.0mg/l IBA. More than 60% of rooted plantlets survived after 5 months of transplanting into the artificial soil mix.

  • PDF

Development of Abrasive Film Polishing System for Cover-Glass Edge using Multi-Body Dynamics Analysis (다물체 동역학 해석을 이용한 커버글라스 Edge 연마용 Abrasive Film Polishing 시스템 개발)

  • Ha, Seok-Jae;Cho, Yong-Gyu;Kim, Byung-Chan;Kang, Dong-Seong;Cho, Myeong-Woo;Lee, Woo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7071-7077
    • /
    • 2015
  • In recently, the demand of cover-glass is increased because smart phone, tablet pc, and electrical device has become widely used. The display of mobile device is enlarged, so it is necessary to have a high strength against the external force such as contact or falling. In fabrication process of cover-glass, a grinding process is very important process to obtain high strength of glass. Conventional grinding process using a grinding wheel is caused such as a scratch, chipping, notch, and micro-crack on a surface. In this paper, polishing system using a abrasive film was developed for a grinding of mobile cover-glass. To evaluate structural stability of the designed system, finite element model of the polishing system is generated, and multi-body dynamic analysis of abrasive film polishing machine is proposed. As a result of the analysis, stress and displacement analysis of abrasive film polishing system are performed, and using laser displacement sensor, structural stability of abrasive film polishing system is confirmed by measuring displacement.

A Study on the Development and Dielectric Properties of Insulating Materials for Super-Conductor -For Matrix of Composite Materials- (초전도체 절연용 재료의 전기적 절연 특성과 개발에 관한 연구-복합 재료의 매트릭스에 대하여-)

  • 조정수;최세원;김종경;이규철;이종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.7
    • /
    • pp.511-523
    • /
    • 1989
  • This paper investigates physical properties, the electrical and mechanical characteristics of the epoxy resin with different curing methods and postcuring conditions at room temperature or cryogenic temperature (LN2). According to the results in this paper, first, it is found that the physical properties, electrical and mechanical characteristics of the epoxy resin are largely affected by the interior reaction temperature on the curing. Thus, in the fabrication of the sample, several excellent characteristics of the sample are obtained by controlling the interior reaction temperature of the epoxy resin. Second, the sample having optimal electrical and mechanical characteristics is obtained for the repetitive post-curing method at 100c in view point of the post-curing conditions of the epoxy resin. Third, it appears that tan and characteristics at LN2 temperature are about half of those at room temperature. Fourth, it appears that the dielectric strength of the epoxy resin at LN2 temperature is higher by about 0.6-1.0 MV/cm than that at room temperature. The heat-aging of the epoxy resin due to the micro-defect and excess fever-movement have been noticed to affect dielectric strength at LN2 temperature more significantly than at room temperature.

Adsorption and Catalytic Characteristics of Acid-Treated Clinoptilolite Zeolite (산처리한 Clinoptilolite Zeolite 의 흡착 및 촉매특성)

  • Chon Hakze;Seo Gon
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.469-478
    • /
    • 1976
  • Clinoptilolite zeolite samples were treated with hydrochloric acid, sulfuric acid and phosphoric acid of different strength and the adsorption characteristics and crystal structures of the original and acid-treated clinoptilolites were studied. By treating with hydrochloric acid, the adsorbed amount increased to 5-fold for nitrogen, to 3-fold for benzene, but for methanol no significant change was observed. As acid strength increased further, there were declines both in adsorption capacity and crystallinity. The results showed that the increase of adsorbed amount was caused by the rearrangement of the pore entrance and cation exchange. A method for determination of clinoptilolite content in natural mineral based on benzene adsorption on acid-treated sample is proposed. By this method, the original sample used in this study was found to contain approximately 40% of clinoptilolite. Using pulse technique in micro-catalytic reactor system, the catalytic activities of hydrochloric acid-treated clinoptilolites in cumene cracking and toluene disproportionation reactions were measured. For cumene cracking reaction, the maximum conversion was observed for the 0.5 N hydrochloric acid-treated sample. It is instructive to note that the maximum benzene adsorption was also observed for the sample treated with 0.5 N HCl. This suggest that the conversion rate was determined mainly by the rate of transport of reactants and the products through the pore structure. In the toluene disproportionation reaction, the same trend was observed. But the rate of deactivation was high for samples with strong acid sites. Since catalyst having higher activity was deactivated more easily, the conversion maximum was shifted to the sample treated with higher concentration of acid, -1N. The catalytic activity of $Ca^{2+} and La^{3+} ion exchanged samples for the toluene disproportion was much lower than that of acid-treated samples. Introduction of Ca^{2+} and La^{3+}$ into the pore structure apparently decreases the effective pore diameter of acid-treated clinoptilolite thus limiting the diffusion of reactants and products.

  • PDF

Sensory Characteristics and Rheological Change of Kongdduk (soybean rice cake) depending on Cooking, and Packaging Method (콩떡의 제조 및 저장과 포장에 따른 물성 변화와 관능적 특성)

  • 정혜숙
    • Korean Journal of Human Ecology
    • /
    • v.5 no.2
    • /
    • pp.55-74
    • /
    • 2002
  • This study, observing each respectively packaged Kongdduk during 12-day storing period and comparing it with unpackaged Kongdduk, through a cross-sectional view of its fiber and temperament, through a sensory evaluation rheometer measurement of rheological change depending on storing period and packaging type and through the organic acid content, micro-organic change, and retrogressive process. The results are as follows: 1. Kongdduk made of bean oil shows better chewiness, cohesiveness, and moistness than Kongdduk made of bean flour while Kongdduk made of bean flour shows better rheological properties as to roasted nutty taste or roasted nutty order. 2. The test of the cutted loaves of Kongdduk shows that adding oil of proper proportion to the dough of steamed rice cake in accordance with the amount of rice flour has a good influence on rheological properties of softness. 3. Rice cakes were prepared by addition of yellow soybean flour or peanut flour and packaged with CMP or VP, and their physical characteristics were monitored by sensory evaluation and mechanical measurement while storing for 6 days. For VP samples, yellow soybean rice cake showed little changes in cohesiveness, moistness and chewiness for 6 days of storage, while pure rice cake and peanut rice cake showed an increase in strength and hardness from the 4th day of storage. In case of CMP, yellow soybean rice cake hardly showed a difference in cohesiveness, moistness and chewiness for 6 days, while pure rice cake and peanut rice cake showed a significant difference from the 4th day in sensory evaluation. 4. For rheometer measurement, yellow soybean rice cake with CMP or VP showed little changes in strength or hardness for 6 days, while peanut rice cake and pure rice cake showed a drastic decrease in cohesiveness, from the End day and adhesiveness from the 4th day of storage. As there was no remarkable difference or deterioration for 6 days of storage in yellow soybean rice cake between CMP and VP, the ingredients of rice cakeappeared to be more important than the type of packaging in terms of quality deterioration of rice cake. 5. As the storing period passed by, organic acid is detected less at CMP-packaged Knngdduk than at wrapped. and its increasing speed proves to be slower as well. 6. The one wrapped with plyethylene film began to get moldy from pure rice cake or Kongdduk (rice cake mixed with yellow soybean or peanut) after 6 days, and more and more modly after 9 daysor after 12 days, but the CMP-packaged ones didn't get modly until 12 days or more. 7. CMP-packaged Kongdduk showed higher enthalpy of retrogradation than PE-wrapped one. As storing Period Passed by, Kongdduk,s enthalpy grew high. That is to say, it shows that Kongdduk got retrograded.

  • PDF

MECHANICAL PROPERTIES AND MICROLEAKAGE OF COMPOSITE RESIN MATERIALS CURED BY VARIABLE LIGHT INTENSITIES (가변 광도에 따른 복합레진의 기계적 물성 및 변연누출도 변화)

  • Han, Seung-Ryul;Min, Kyung-San;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.134-145
    • /
    • 2003
  • Mechanical properties and microleakage of two composites [conventional hybrid type DenFil (VERICOM Co., Anyang, Korea) / micro matrix hybrid type Esthet X (Dentsply Caulk, Milford, DE, U.S.A.)] were evaluated to assess whether variable light intensity curing is better than conventional curing technique. Curing was done for 40 seconds in two ways of 2 step soft-start technique and 5 step ramping technique. Three kinds of light intensities of 50, 100, $200{\;}mW/\textrm{cm}^2$ were initially used for 10, 20, 30 seconds each and the maximum intensity of $600 {\;}mW/\textrm{cm}^2$ was used for the rest of curing time in a soft-start curing tech nique. In a ramping technique, curing was done with the same initial intensities and the light intensity was increased 5 times with the same rate to the maximum intensity of $600{\;}mW/\textrm{cm}^2$. After determining conditions that showed no different mechanical properties with conventional technique, Esthet X composite was filled in a class V cavity, which dimension was $4{\times}3{\times}1.5{\;}mm$ and cured under those conditions. Microleakage was evaluated in two ways of dye penetration and maximum gap estimation through SEM observation. ANOVA and Spearman's rho test were used to confirm any statistical significance among groups. The results were as follows : 1 Several curing conditions of variable light intensities resulted in the similar mechanical properties with a conventional continuous curing technique, except conditions that start curing with an initial light intensity of $50{\;}mW/\textrm{cm}^2$. 2. Conventional and ramping techniques were better than soft-start technique in mechanical properties of microhardness and compressive strength. 3. Soft-start group that started curing with an initial light intensity of $100{\;}mW/\textrm{cm}^2$ for 10 seconds showed the least dye penetration. Soft-start group that started curing with an initial light intensity of $200{\;}mW/\textrm{cm}^2$ for 10 seconds showed the smallest marginal gap, if there was no difference among groups. 4. Soft-start technique resulted in better dye-proof margin than conventional technique(p=0.014) and ramping technique(p = 0.002). 5. There was a very low relationship(p=0.157) between the methods of dye penetration and marginal gap determination through SEM evaluation. From the results of this study, it was revealed that ramping technique would be better than conventional technique in mechanical properties, however, soft-start technique might be better than conventional one in microleakage. It was concluded that much endeavor should be made to find out the curing conditions, which have advantages of both aspects or to solve these kinds of problems through a novel idea of polymerization.

An Assessment of Utilization of the Pungchon Limestone in Paper Industry (풍촌층 석회석의 제지 산업에서의 응용성 평가)

  • Lee, Na-Kyong;Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.339-349
    • /
    • 2007
  • For various types of the Pungchon limestone, diverse mineral characters of the limestone including their size and morphology are investigated by using of ELS and SEM to examine the possibility of application as fillers to paper industry. Also, the measurement of zeta potential and the evaluation of coagulation properties in calcite suspension was made for fine powders of the limestone to examine the applicability and efficiency in wet-papermaking process. Fine powder of the Pungchon lime-stone, largely controlled by original mineral characters of ore in mineralogical aspects, exhibits some-what different trend in particle morphology according to ore types, and thereby, the size distribution, zeta potential and coagulation properties also become different. The examined whiteness, brightness, opacity and sheet strength in hand sheet also show remarkable differences according to ore types. These are seemed to be basically due to the results of combined effects of whiteness, site distribution, refractive index, and morphology of the limestone powder on the properties of hand sheet. Considering the investigated results, all types of the Pungchon limestone appear to be sufficiently applicable to paper industry. Especially, the mega-crystalline calcite type is evaluated to be overall suitable for the purpose of paper industry due to the higher values in whiteness and brightness. In addition the fine powder of micro-crystalline calcite type is assessed particularly to have a good quality in sheet strength by virtue of irregular particle shape.

Characterization of Stress Corrosion Cracking at the Welded Region of High Strength Steel using Acoustic Emission Method (음향방출법에 의한 고 장력강 용접부의 부식손상 특성 평가)

  • Na, Eui-Gyun;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.212-219
    • /
    • 2003
  • This study is to evaluate the characteristics of SCC at the welded region of high strength steel using acoustic emission(AE) method. Specimens were loaded by a slow strain rate method in synthetic seawater and the damage process was monitored simultaneously by AE method. Corrosive environment was controlled using the potentiostat, in which -0.8V and -1.1V were applied to the specimens. In the case of one-pass weldment subjected to -0.8V, much more AE counts were detected compared with the PWHT specimen. It was verified through the cumulative counts that coalescence of micro cracks and cracks for the one pass weldment with -0.8V were mostly detected. In case of the one pass weldment subjected to -1.1V, time to failure became shorter and AE counts were produced considerably as compared with that of the two pass weldment. It was shown that AE counts and range of AE amplitude have close relations with the number and size as well as width of the cracks which were formed during the SCC.