• Title/Summary/Keyword: Micro positioning system

Search Result 99, Processing Time 0.025 seconds

A Study on the Improvement of Positioning accuracy of ultra-precision stage (초정밀스테이지의 위치결정정도 향상에 관한 연구)

  • 황주호;송창규;박천홍;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.465-468
    • /
    • 2001
  • An aerostatic stage has frictionless behavior, so it has a advantage of investigation into positioning characteristics. A one-dimensional aerostatic ceramic stage with ballscrew driven and laser scale feedback system is manufactured, aiming at investigating positioning characteristic of ultra-precision stage. We confirm, this ceramic aerostatic stage has a 10nm micro resolution, and can be reduced mean of position error by compensation of numeric control command. By means of analyzing relationship of position error and change of temperature, we build a on-line compensation algorithm of position error from the measured temperature data. So we can improve repeatability of ultra-precision stage up to 34%($0.095{\mu}$) of the normal condition.

  • PDF

Positioning of the high precision linear motion system based on the voice coil actuator (보이스코일 액튜에이터를 기반으로 한 고정밀 직선이송 시스템의 위치결정)

  • Lee, Jun-Woo;Kim, Byeong-Hee;Chang, In-Bae
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.9-14
    • /
    • 1999
  • The voice coil actuator uses the Lorentz force between the magnetic field of the permanent magnets and the electromagnets to the motions and positioning. The small size, light weight and fast dynamic response of the these type actuators lead to admit them in the micro-positioning apparatus of the micro-machining systems. In this paper, the linear motion voice coil actuator is developed for the driving and positioning the rotating electrode of the electric discharge machine (EDM). The analyzed and measured results for the actuator are compared and discussed.

  • PDF

An Integrated Navigation System Combining INS and Ultrasonic-Speedometer to Overcome GPS-denied Area (GPS 음영 지역 극복을 위한 INS/초음파 속도계 결합 항법 시스템 설계)

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, La-Woo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • Recently, multi-sensor integration techniques have been actively studied to obtain reliable and accurate navigation solution in GPS (Global Positioning System)-denied harsh environments such as urban canyons, tunnels, and underground roads. In this paper, we propose a low-cost ultrasonic-speedometer utilizing the characteristics of the ultrasonic propagation. An efficient integrated INS (inertial navigation system)/ultrasonic-speedometer navigation system is also proposed to improve the accuracy of positioning in GPS-denied environments. To evaluate the proposed system, car experiments with field-collected measurements were performed. By the experiment results, it was confirmed that the proposed INS/ultrasonic-speedometer system bounds the positioning error growth effectively even though GPS signal is blocked more than 10 seconds and a low-cost MEMS IMU (micro electro mechanical systems inertial measurement unit) is utilized.

High Precision Hybrid Milling Machine Using Dual-Stage (듀얼스테이지를 이용한 고정밀도의 하이브리드 밀링머신)

  • Chung, Byeong-Mook;Yeo, In-Joo;Ko, Tae-Jo;Lee, Cheon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.39-46
    • /
    • 2008
  • High precision machining technology has become one of the important parts in the development of a precision machine. Such a machine requires high speed on a large workspace as well as high precision positioning. For machining systems having a long stroke with ultra precision, a dual-stage system including a global stage (coarse stage) and a micro stage (fine stage) is designed in this paper. Though linear motors have a long stroke and high precision feed drivers, they have some limitations for submicron positioning. Piezo-actuators with high precision also have severe disadvantage for the travel range, and the stroke is limited to a few microns. In the milling experiments, the positional accuracy has been readily achieved within 0.2 micron over the typical 20 mm stroke, and the path error over 2 micron was reduced within 0.2 micron. Therefore, this technique can be applied to develop high precision positioning and machining in the micro manufacturing and machining system.

Performance Evaluation of Switching Amplifier in Micro-positioning Systems with Piezoelectric Actuator (마이크로 변위제어 시스템의 압전 액츄에이터 구동을 위한 스위칭 증폭기 성능 분석)

  • Park, Joung-Hu;Baek, Jong-Bok;Cho, Bo-Hyung;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.62-71
    • /
    • 2009
  • In this paper, an improved drive method of piezoelectric PZT stack actuator for micro-positioning system is proposed and the performances are evaluated. This type of amplifier is based on switching technology efficiently handling the arbitrary regenerative energy from the piezoelectric actuator. The conventional voltage-feedback control method has the THD of -32dB (${\approx}2.5%$) with 100mHz sinusoidal reference, which means that the positioning performance in linearity degrades due to the hysteretic relationship between actuator voltage and the displacement. This paper proposed an improved charge-controlling method, which utilizes differential information of charge reference instead of integrating the actuator's current. The current waveform has THD under -40dBV (=1%) and the displacement waveform nearly -52dB (${\approx}0.25%$), which means that the positioning performance is very excellent. Finally, another method of the displacement feedback control has better performance than the voltage method, however there exists a limitation in performance of the system.

Intelligent Force Control of a Flip Chip Mounting System

  • Shim, Jae Hong;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.316-321
    • /
    • 2004
  • In this paper, we have developed a new mounting head system for flip chip. The proposed head system consists of a macro/micro positioning actuator for stable force control. The macro actuator provides the system with a gross motion while the micro device yields fine tuned motion to reduce the harmful impact force that occurs between very small sized electronic parts and the surface of a PCB(printed circuit board). In order to show the effectiveness of the proposed macro/micro chip mounting system, we compared the proposed system with the conventional chip mounting head equipped with a macro actuator only. A series of experiments were executed under the mounting conditions such as various access velocities and PCB stiffness. As a result of this study, a satisfactory voice coil actuator as the micro actuator has been developed, and its performance meet well the specifications desired for the design of the chip mounting head system and show good correspondence between theoretical analysis and experimental results.

Analysis and compensation of positioning error for aerostatic stage (공기정합 스테이지의 위치결정오차 분석 및 보정)

  • 황주호;박천홍;이찬흥;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.378-391
    • /
    • 2002
  • A 250mm stroke aerostatic stage, which detects position with laser scale and is driven by linear motor, is made and analyzed positioning error in 20$\pm$ 0.5 $^{\circ}C$ controlled atmosphere, aiming at investigating positioning characteristic of ultra-precision stage. We prove this aerostatic stage has a 10nm micro step resolution by experiment. By means of analyzing laser interferometer system, the scale of measuring error is about 0.2-0.4$\mu\textrm{m}$ according to refractive index error from missing the temperature change. To improve laser interferometer system, compensate refractive index error using measuring data from thermocouple. And, confirm 0.10$\mu\textrm{m}$ repeatability and 0.13 $\mu\textrm{m}$ positioning accuracy using the compensating refractive index. Also, we confirm 0.07 ${\mu}{\textrm}{m}$ repeatability of the stage using capacitive displacement sensor.

  • PDF

Development of the Position Measuring System of Micro Step Motor (Micro Step Motor의 위치정밀도측정 시스템 개발)

  • Roh, Byung-Ok;Kim, An-Sick;Ryu, Young-Kee;Sung, Ha-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.70-75
    • /
    • 2001
  • In this study, we developed a measuring system utilizing machine vision for measuring the precision of positioning of micro stepping motor. The measuring system equipped with CCD Camera, ring illumination and diffuser measures the repeatability and the hysterisis of a micro stepping motor by means of the pointer attached to the motor directly. With the measuring system, it was possible to measure the precision of the micro stepping motor in the resolution of $50{\mu}m$.

  • PDF

Development of Piezo-Eloectric Micro-Depth Control System (압전소자에 의한 미세이송시스템의 개발에 관한 연구)

  • 김동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.40-62
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool optical device measurement system. In order to keep a high precision displacement resolution it to useful to take a position sensor and feedback of the error. From the practical point of view high-resolution displacement sensor systems are very expensive and it is difficult to make such a sensitive sensor work properly in a poor operational environment of industry. In this study a piezo-electric micro-depth control system which does not require position sensor but piezoelectric voltage feedback has been developed. It is driven by hysteresis-considering reference input voltage calculated in advance and actuator/sensor characteristics of piezoelectric materials. From the result of experiments a fast and stable response of micro-depth control system has been achieved and an efficient technique to control the piezoelectric actuator suggested.

  • PDF

3-DOF automatic printed board positioning system using impact drive mechanism

  • Mendes, J.;Nishimura, M.;Yamagata, Y.;Higuchi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.129-132
    • /
    • 1996
  • There is a tendency nowadays to produce increasingly miniaturized electronic equipment which incorporate parts that have to be precisely positioned, like lenses, heads and CCD's in scanners, printers, copiers, VCR's, optical fiber modules, etc. In contrast to the production process of precision parts, which is currently being carried out automatically, the assemblage process is still being performed by specially skilled technicians. The assemblage process comprises normally the following steps: firstly, the parts are roughly positioned and partially fixed, secondly, the parts are manually nudged towards the target position and finally glued, screwed or welded. This paper presents a system that uses six piezo Impact Drive Mechanisms for accurate micro positioning within three degrees of freedom (lateral and longitudinal translation and rotation). The system is designed to positioning a printed circuit board with an accuracy better than 3 .mu.m (for translations), 5 mrad (for rotation).

  • PDF