• Title/Summary/Keyword: Micro plasma

Search Result 509, Processing Time 0.028 seconds

The Surface Treatment Effect for Nanoimprint Lithography using Vapor Deposition of Silane Coupling Agent (나노임프린트 공정에서 실란커플링제 기상증착을 이용한 표면처리 효과)

  • Lee, Dong-Il;kim, Ki-Don;Jeong, Jun-Ho;Lee, Eung-Sug;Choi, Dae-Geun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • Nanoimprint lithography (NIL) is useful technique because of its low cost and high throughput capability for the fabrication of sub-micrometer patterns which has potential applications in micro-optics, magnetic memory devices, bio sensors, and photonic crystals. Usually, a chemical surface treatment of the stamp is needed to ensure a clean release after imprinting and to protect the expensive original master against contamination. Meanwhile, adhesion promoter between resin and substrate is also important in the nanoscale pattern. In this work, we have investigated the effect of surface treatment using silane coupling agent as release layer and adhesion promoter for UV-Nanoimprint lithography. Uniform SAM (self-assembled monolayer) could be fabricated by vapor deposition method. Vapor phase process eliminates the use of organic solvents and greatly simplifies the handling of the sample. It was also proven that 3-acryloxypropyl methyl dichlorosilane (APMDS) could strongly improve the adhesion force between resin and substrate compared with common planarization layer such as DUV-30J or oxygen plasma treatment.

High Extracellular Calcium Increased Expression of Ank, PC-1 and Osteopontin in Mouse Calvarial Cells

  • Song, Mi-Na;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2008
  • In the process of bone remodeling, mineral phase of bone is dissolved by osteoclasts, resulting in elevation of calcium concentration in micro-environment. This study was performed to explore the effect of high extracellular calcium ($Ca{^{2+}}_e$) on mineralized nodule formation and on the expression of progressive ankylosis (Ank), plasma cell membrane glycoprotein-1 (PC-1) and osteopontin by primary cultured mouse calvarial cells. Osteoblastic differentiation and mineralized nodule formation was induced by culture of mouse calvarial cells in osteoblast differentiation medium containing ascorbic acid and ${\beta}$-glycerophosphate. Although Ank, PC-1 and osteopontin are well known inhibitors of mineralization, expression of these genes were induced at the later stage of osteoblast differentiation during when expression of osteocalcin, a late marker gene of osteoblast differentiation, was induced and mineralization was actively progressing. High $Ca{^{2+}}_e$(10 mM) treatment highly enhanced mRNA expression of Ank, PC-1 and osteopontin in the late stage of osteoblast differentiation but not in the early stage. Inhibition of p44/42 MAPK activation but not that of protein kinase C suppressed high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin. When high $Ca{^{2+}}_e$(5 mM or 10 mM) was present in culture medium during when mineral deposition was actively progressing, matrix calcifiation was significantly increased by high $Ca{^{2+}}_e$. This stimulatory effect was abolished by pyrophosphate (5 mM) or levamisole (0.1-0.5 mM), an alkaline phosphatase inhibitor. In addition, probenecid (2mM), an inhibitor of Ank, suppressed matrix calcification in both control and high $Ca{^{2+}}_{e^-}$treated group, suggesting the possible role of Ank in matrix calcification by osteoblasts. Taken together, these results showed that high $Ca{^{2+}}_e$ stimulates expression of Ank, PC-1 and osteopontin as well as matrix calcification in late differentiation stage of osteoblasts and that p44/42 MAPK activation is involved in high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin.

Insights into the Role of Follicular Helper T Cells in Autoimmunity

  • Park, Hong-Jai;Kim, Do-Hyun;Lim, Sang-Ho;Kim, Won-Ju;Youn, Jeehee;Choi, Youn-Soo;Choi, Je-Min
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • Follicular helper T ($T_{FH}$) cells are recently highlighted as their crucial role for humoral immunity to infection as well as their abnormal control to induce autoimmune disease. During an infection, na$\ddot{i}$ve T cells are differentiating into $T_{FH}$ cells which mediate memory B cells and long-lived plasma cells in germinal center (GC). $T_{FH}$ cells are characterized by their expression of master regulator, Bcl-6, and chemokine receptor, CXCR5, which are essential for the migration of T cells into the B cell follicle. Within the follicle, crosstalk occurs between B cells and $T_{FH}$ cells, leading to class switch recombination and affinity maturation. Various signaling molecules, including cytokines, surface molecules, and transcription factors are involved in $T_{FH}$ cell differentiation. IL-6 and IL-21 cytokine-mediated STAT signaling pathways, including STAT1 and STAT3, are crucial for inducing Bcl-6 expression and $T_{FH}$ cell differentiation. $T_{FH}$ cells express important surface molecules such as ICOS, PD-1, IL-21, BTLA, SAP and CD40L for mediating the interaction between T and B cells. Recently, two types of microRNA (miRNA) were found to be involved in the regulation of $T_{FH}$ cells. The miR-17-92 cluster induces Bcl-6 and $T_{FH}$ cell differentiation, whereas miR-10a negatively regulates Bcl-6 expression in T cells. In addition, follicular regulatory T ($T_{FR}$) cells are studied as thymus-derived $CXCR5^+PD-1^+Foxp3^+\;T_{reg}$ cells that play a significant role in limiting the GC response. Regulation of $T_{FH}$ cell differentiation and the GC reaction via miRNA and $T_{FR}$ cells could be important regulatory mechanisms for maintaining immune tolerance and preventing autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we review recent studies on the various factors that affect $T_{FH}$ cell differentiation, and the role of $T_{FH}$ cells in autoimmune diseases.

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Expression of Hepatitis B Virus S Gene in Pichia pastoris and Application of the Product for Detection of Anti-HBs Antibody

  • Hu, Bo;Liang, Minjian;Hong, Guoqiang;Li, Zhaoxia;Zhu, Zhenyu;Li, Lin
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.683-689
    • /
    • 2005
  • Antibody to hepatitis B surface antigen (HBsAb) is the important serological marker of the hepatitis B virus (HBV) infection. Conventionally, the hepatitis B surface antigen (HBsAg) obtained from the plasma of HBV carriers is used as the diagnostic antigen for detection of HBsAb. This blood-origin antigen has some disadvantages involved in high cost, over-elaborate preparation, risk of infection, et al. In an attempt to explore the suitable recombinant HBsAg for the diagnostic purpose, the HBV S gene was expressed in Pichia pastoris and the product was applied for detection of HBsAb. Hepatitis B virus S gene was inserted into the yeast vector and the expressed product was analyzed by sodium dodecyl sulphate polyacrolamide gel electrophoresis (SDS-PAGE), immunoblot, electronic microscope and enzyme linked immunosorbent assay (ELISA). The preparations of synthesized S protein were applied to detect HBsAb by sandwich ELISA. The S gene encoding the 226 amino acid of HBsAg carrying ahexa-histidine tag at C terminus was successfully expressed in Pichia pastoris. The His-Tagged S protein in this strain was expressed at a level of about 14.5% of total cell protein. Immunoblot showed the recombinant HBsAg recognized by monoclonal HBsAb and there was no cross reaction between all proteins from the host and normal sera. HBsAb detection indicated that the sensitivity reached 10 mIu (micro international unit)/ml and the specificity was 100% with HBsAb standard of National Center for Clinical Laboratories. A total of 293 random sera were assayed using recombinant S protein and a commercial HBsAb ELISA kit (produced by blood-origin HBsAg), 35 HBsAb positive sera and 258 HBsAb negative sera were examined. The same results were obtained with two different reagents and there was no significant difference in the value of S/CO between the two reagents. The recombinant HBV S protein with good immunoreactivity and specificity was successfully expressed in Pichia pastoris. The reagent for HBsAb detection prepared by Pichia pastoris-derived S protein showed high sensitivity and specificity for detection of HBsAb standard. And a good correlation was obtained between the reagent produced by recombinant S protein and commercial kit produced by blood-origin HBsAg in random samples.

Characterization of Membrane Fouling and It's Optimal Chemical Cleaning Method in MF Process using D dam water (D댐수를 이용한 정밀여과 공정에서 막오염 특성 및 최적 화학세정방법 조사)

  • Kim, Chung H.;Lim, Jae L.;Lee, Byung G.;Chae, Seon H.;Park, Min G.;Park, Sang H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.559-569
    • /
    • 2007
  • The purposes of this study were to find the main foulant of membrane and the optimal chemical cleaning method for MF(microfiltration) drinking water treatment system using D dam water as water source. The MF pilot plant which can treat maximum $500m^3/d$ consisted of 3 racks and was operated for 10 months under various operation conditions. After 10 months operation, $1^{st}$ and $2^{nd}$ rack of membrane pilot plant system were cleaned chemically and the degree of the restoration of the fouled membrane in terms of the pure water flux was detemnined. Inorganic compounds which contained in chemical cleaning waste was analyzed by Inductively Coupled Plasma (ICP). One membrane module for 3rd rack was disjointed and membrane fouling materials, especially inorganic compounds were investigated by Electron Probe Microanlysis (EPMA) to elucidate the reason of TMP increase. And also, the various chemical reagents (1N HCl or $H_2SO_4$, oxalic acid as acid and 0.3% NaOCl as alkali) were tested by combination of acid and alkali to determine the optimal chemical cleaning method for the MF system using micro-modules manufactured using the disjointed module. It was verified that the inside and outside of membrane module was colorized with black. As a result of the quantitative and semi-qualitative analysis of membrane foulant by ICP, most of inorganic foulant was manganese which is hard to remove by inorganic acid such as HCI. Especially, it was observed by EPMA that Mn was attached more seriously in inside surface of membrane than in outside surface of that. It was supposed that Mn fouling in inside surface of membrane might be caused by the oxidation of soluble manganese (Mn(II)) to insoluble manganese ($MnO_2$) by chlorine containing in backwashing water. The optimal cleaning method for the removal of manganese fouling was consecutive cleaning with the mixture of 1N HCl and 1% of oxalic acid, 0.3% NaOCl, and 1N HCl showing 91% of the restoration of the fouled membrane.

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

Properties and Structures of Bi2O3-B2O3-ZnO Glasses for Application in Plasma Display Panels Rib (PDP Rib용 Bi2O3-B2O3-ZnO계 유리의 물성과 구조)

  • Jin, Young-Hun;Jeon, Young-Wook;Lee, Byung-Chul;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.184-189
    • /
    • 2002
  • This study, compared with data of PbO-base glass system is a part of new glass composition design with Bi-base composition for PDP Rib. As $Bi_2O_3-B_2O_3-ZnO$ glass composition including Bi, which have similar density value and work facility to PbO, properties of softening point, thermal expansion coefficient, chemical durability, dielectric constant, and structural changing by XPS were investigated. $Bi_2O_3-B_2O_3-ZnO$ glass system, added 50∼80 wt% $Bi_2O_3$ widely, were presented 400∼480$^{\circ}C$ softening temperature, $68{\sim}72{\times}10^{-7}/^{\circ}C$ thermal expansion coefficient and 13∼25 dielectric constant. These results were showed similar physical properties with Pb-base glass system of same composition content, application possibility as starting composition of rib material was identified through micro-control of components and physical properties. The bonding energy of $O_{1s}$ as the $Bi_2O_3$ content decreasing was increased and full width at half-maximum (FWHM) was decreased, which is caused by non-bridging oxygen increasing.

Fabrication and sintering of nano $TiN_x$ and its composites (Nano $TiN_x$와 그 복합체의 제조 및 소결)

  • Kim, Dong-Sik;Kim, Sung-Jin;Rahno, Khamidova;Park, Sung-Bum;Park, Seung-Sik;Lee, Hye-Jeong;Lee, Sang-Woo;Cho, Kyeong-Sik;Woo, Heung-Sik;Ahn, Joong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.101-105
    • /
    • 2006
  • We fabricated the nano $TiN_x$ by making of reaction between titanium powder and $Si_3N_4$ during planetary milling. The $TiN_x$ powder was sintered by spark plasma sintering machine after mixing with 50 wt% of titanium powder, and the sintered body was heat-treated at $850^{\circ}C$ in order to investigate its hardness property at the elevated temperature. We analyzed crystal structure by XRD. We observed the peaks of $TiN_{0.26}$ and TiN after 10 hours milling, and we observed TiN peak mainly after 20 hours milling. The reacted particle size distribution was investigated by FE-SEM. Increase of milling time, the size of reacted particles was decreased and the $10{\sim}20nm$ size of $TiN_x$ on the surface of titanium and $TiN_x$ was observed after 20 hours milling. The micro-Vickers hardness of mixed sintered body was about $1050kgf/mm^2$.

MINERAL NUTRITION OF GRAZING SHEEP IN NORTHERN CHINA II. SELENIUM, COPPER, MOLYBDENUM, IRON AND ZINC IN PASTURE, FEED SUPPLEMENTS AND SHEEP

  • Masters, D.G.;Purser, D.B.;Yu, S.X.;Wang, Z.S.;Yang, R.Z.;Liu, N.;Lu, D.X.;Wu, L.H.;Ren, J.K.;Li, G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.107-113
    • /
    • 1993
  • This study determined the concentrations of micro-minerals in pastures, in feed supplements and in grazing, reproducing ewes, at different times during the year, at three farms in Northern China. Samples were collected 5 to 8 times during the year and analysed for selenium, copper, iron, molybdenum and zinc. On two farms selenium concentrations in both pastures and animal tissues were low for part of the year. The lowest concentrations in pasture (< $30{\mu}g/kg$ DM) and liver (< $100{\mu}g/kg$ wet weight) indicated that productivity of the sheep may be reduced by a deficiency of this element. On one farm copper concentrations in the lever were in the liver were in the deficient range (< $5{\mu}g/kg$ wet weight) for part of the year. It is likely that this is a result of high intakes of iron from pasture (up to 4.5 g Fe/kg DM) and soil, as indicated by high concentrations of iron in faeces (up to 7 g Fe/kg DM). Molybdenum intake is unlikely to have had much influence on copper absorption because pasture concentrations of this element were not unusually high (1 to 5 mg/kg DM). Zinc in pastures on two farms was below 10 mg/kg DM for part of the year. On one of these farms, the concentration of zinc in faeces was below 30 mg/kg DM throughout the year and this is consistent with zinc intakes of 7 to 15 mg/kg. Despite these low intakes, the concentratons of zinc in plasma were consistently above deficient levels. No clinical signs of deficiencies of any of the elements studied were observed.