• Title/Summary/Keyword: Micro plasma

Search Result 507, Processing Time 0.028 seconds

POLYMERIZATION ABILITY OF SEVERAL LIGHT CURING SOURCES ON COMPOSITE RESIN (광원에 따른 중합광의 복합레진 중합 능력 비교)

  • Shin, Hye-Jin;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.156-161
    • /
    • 2003
  • The purpose of this study is to evaluate the polymerization ability of three different light sources by microhardness test. Stainless steel molds of 1, 2, 3, 4 and 5 mm in thickness of 7 mm in diameter were prepared. The hybrid composite Z100 was packed into the hole of the mold and curing light was activated for designated time. Three different light sources, conventional halogen, light emitting diode, and plasma arc, were used for curing of composite. Two different curing times applied ; one is to follow the manufacturers recommendation and the other is to extend the curing time of LED and plasma arc for balancing the light energy with halogen. Immediately after curing, the Vickers hardness was measured at the bottom of specimen. The results were as follows. 1 The composite cured with LED showed equal to higher microhardnesss than halogen. 2. The composite was cured with plasma arc by manufacturers recommendation showed lowest micro-hardness at all thickness. However, when curing time was extended, microhardness was higher than the others. In conclusion, this study suggested that plasma arc needs properly extended curing time.

Surface Hardness and Corrosion Behavior of AISI 420 Martensitic Stainless Steels Treated by Plasma Oxy-Nitriding Processing (플라즈마 산질화처리된 AISI 420 마르텐사이트 스테인레스 강재의 표면 경도 및 부식 거동)

  • Jinhan Kim;Kwangmin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.309-314
    • /
    • 2023
  • This study aimed to address the limitations of traditional plasma nitriding methods by implementing a short-term plasma oxy-nitriding treatment on the surface of AISI 420 martensitic stainless steel. This treatment involved the sequential formation of nitride and oxide layers, to enhance surface hardness and corrosion resistance, respectively. The process resulted in the formation of a 20 ㎛-thick nitride layer and a 3 ㎛-thick oxide layer on the steel surface. Initially, the hardness increased by 2.2 times after nitriding, followed by a subsequent decrease of approximately 31 % after oxidation. While the nitriding process reduced corrosion resistance, the subsequent oxidation process led to the formation of a passive oxide film, effectively resolving this issue. The pitting corrosion of the oxide passive film started at 82.6 mVssc, providing better corrosion resistance characteristics than the nitride layer. Consequently, the trade-off between surface hardness and corrosion resistance in plasma oxy-nitrided AISI 420 martensitic stainless steel is anticipated to be recognized as an innovative and comprehensive surface treatment process for biomedical components.

The Effect of Micro Nano Multi-Scale Structures on the Surface Wettability (초소수성 표면 개질에 미치는 마이크로 나노 복합구조의 영향)

  • Lee, Sang-Min;Jung, Im-Deok;Ko, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.424-429
    • /
    • 2008
  • Surface wettability in terms of the size of the micro nano structures has been examined. To evaluate the influence of the nano structures on the contact angles, we fabricated two different kinds of structures: squarepillar-type microstructure with nano-protrusions and without nano-protrusions. Microstructure and nanostructure arrays were fabricated by deep reactive ion etching (DRIE) and reactive ion etching (RIE) processes, respectively. And plasma polymerized fluorocarbon (PPFC) was finally deposited onto the fabricated structures. Average value of the measured contact angles from microstructures with nanoprotrusions was $6.37^{\circ}$ higher than that from microstructures without nano-protrusions. This result indicates that the nano-protrusions give a crucial effect to increase the contact angle.

Clinical Aspect of MicroRNA in Lung Cancer

  • Jeong, Hye Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.2
    • /
    • pp.60-64
    • /
    • 2014
  • MicroRNAs (miRNAs) are a class of small noncoding RNAs that modulate target gene activity, and are aberrantly expressed in most types of cancer as well in lung cancer. A miRNA can potentially target a diverse set of mRNAs; further, it plays a critical role in lung tumorigenesis as well as affects patient outcome. Previous studies focused mainly on abnormal miRNAs expressions in lung cancer tissues. Interestingly, circulating miRNAs were identified in human plasma and serum in 2008. Since then, considerable effort has been directed to the study of circulating miRNAs as one of the biomarkers of lung cancer. miRNAs expression of tissues and blood in lung cancer patients is being analyzed by more researchers. Recently, to overcome the high false-positivity of low-dose chest computed tomography scan, miRNAs in lung cancer screening are being investigated. This article summarizes the recent researches regarding clinical applications of miRNAs in the diagnosis and management of lung cancer.

The study of the characteristics of micro-gap discharge (미소 전극 간격을 갖는 방전장치에서의 방전특성 연구)

  • Seo, Jeong-Hyun;Shin, Buhm-Jae;Jeong, Heui-Seob;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.267-269
    • /
    • 1994
  • Various types of plasma display panels(PDPs) have been developed to realize the flat panel display device. But, many of its characteristics must be improved before it can be commercialized. In order to investigate tile characteristics of micro discharge in a PDP ceil, we have constructed a micro-gap discharge system whose electrode gap can be adjustable between $100-1000{\mu}m$ within $0.1{\mu}m$ accuracy. We measured the minimum sustain voltage, current, delay time of discharge while changing parameters(electrode gap distance, electrode surface area, pressure) which influence discharge characteristics.

  • PDF

Influence of Pulse Parameters on the Plasma Nitriding of SCM435 Steels (SCM 435 강의 플라즈마 질화처리시 펄스 인자의 영향)

  • Song, Dong-Won;Lee, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1063-1067
    • /
    • 2001
  • The effect of the pulse parameters(pulse ratio and frequency) on the characteristics of the nitrided layer in the pulsed plasma nitrified SCM435 Steels was investigated. Material properties of the nitrided layer were analysed by employing optical microscope, scanning electron microscope(SEM), X-ray diffractometer(XRD) and micro-Vickers hardness tester. It was found that both the compound layer thickness and the surface hardness decreased with decreasing of pulse ratios. At high pulse ratio, the compound layer thickness and the surface hardness were rapidly decreased with decreasing frequency compared to lower pulse ratios.

  • PDF