• 제목/요약/키워드: Micro multi-objective genetic algorithm

검색결과 5건 처리시간 0.022초

멀티캐스트 라우팅을 위한 다목적 마이크로-유전자 알고리즘 (Multi-Objective Micro-Genetic Algorithm for Multicast Routing)

  • 전성화;한치근
    • 산업공학
    • /
    • 제20권4호
    • /
    • pp.504-514
    • /
    • 2007
  • The multicast routing problem lies in the composition of a multicast routing tree including a source node and multiple destinations. There is a trade-off relationship between cost and delay, and the multicast routing problem of optimizing these two conditions at the same time is a difficult problem to solve and it belongs to a multi-objective optimization problem (MOOP). A multi-objective genetic algorithm (MOGA) is efficient to solve MOOP. A micro-genetic algorithm(${\mu}GA$) is a genetic algorithm with a very small population and a reinitialization process, and it is faster than a simple genetic algorithm (SGA). We propose a multi-objective micro-genetic algorithm (MO${\mu}GA$) that combines a MOGA and a ${\mu}GA$ to find optimal solutions (Pareto optimal solutions) of multicast routing problems. Computational results of a MO${\mu}GA$ show fast convergence and give better solutions for the same amount of computation than a MOGA.

NSGA-II를 이용한 마이크로 프로펠러 수차 블레이드 최적화 (Optimization of Micro Hydro Propeller Turbine blade using NSGA-II)

  • 김병곤
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.19-29
    • /
    • 2014
  • In addition to the development of micro hydro turbine, the challenge in micro hydro turbine design as sustainable hydro devices is focused on the optimization of turbine runner blade which have decisive effect on the turbine performance to reach higher efficiency. A multi-objective optimization method to optimize the performance of runner blade of propeller turbine for micro turbine has been studied. For the initial design of planar blade cascade, singularity distribution method and the combination of the Bezier curve parametric technology is used. A non-dominated sorting genetic algorithm II(NSGA II) is developed based on the multi-objective optimization design method. The comparision with model test show that the blade charachteristics is optimized by NSGA-II has a good efficiency and load distribution. From model test and scale up calculation, the maximum prototype efficiency of the runner blade reaches as high as 90.87%.

멀티캐스트 라우팅을 위한 다목적 마이크로-유전자 알고리즘 (Multi-Objective Micro-Genetic Algorithm for Multicast Routing)

  • 전성화;한치근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (A)
    • /
    • pp.916-918
    • /
    • 2005
  • 다목적 최적화 문제의 목표는 다양한 파레토 최적해(Pareto Optimal Solution)을 찾는데 있으며, 마이크로-유전자 알고리즘(Micro-Genetic Algorithm)은 단순 유전자 알고리즘(Simple Genetic Algorithm)에 비해 소수의 유전자들만을 선별하여 진화시키는 방식으로 효율성을 극대화시킨다. 본 논문에서는 다양한 목적을 동시에 최적화하는 다목적 멀티캐스트 라우팅 문제를 해결하기 위해서 다목적 유전자 알고리즘과 마이크로-유전자 알고리즘을 결합한 다목적 마이크로-유전자 알고리즘을 적용하였다.

  • PDF

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • 제3권3호
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

인공생명 알고리듬에 의한 고속, 소폭 저널베어링의 최적설계 (Optimum Design of High-Speed, Short Journal Bearings by Artificial Life Algorithm)

  • 이윤희;양보석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.324-332
    • /
    • 1999
  • This paper presents the artificial life algorithm which is remarkable in the area of engineering for optimum design. As artificial life organisms have a sensing system, they can find the resource which they want to find and metabolize it. And the characteristics of artificial life are emergence and dynamical interacting with environment. In other words, the micro interaction with each other in the artificial life's group results in emergent colonization in the whole system. In this paper, therefore, artificial life algorithm by using above characteristics is employed into functions optimization. The effectiveness of this proposed algorithm is verified through the numerical test of single and multi objective functions. The numerical tests also show that the proposed algorithm is superior to genetic algorithm and immune algorithm for the Multi-peak function. And artificial life algorithm is also applied to optimum design of high-speed, short journal bearings and verified through the numerical test.

  • PDF