• 제목/요약/키워드: Micro mechanical device

검색결과 267건 처리시간 0.026초

원형 다중전극을 이용한 DNA 조작소자 (Micromachined DNA Manipulation Device Using Circular Multi-Electrodes)

  • 문상준;윤재영;남홍길;지연태;이승섭
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1071-1075
    • /
    • 2003
  • In this paper, we present a DNA manipulation device in the reaction chamber, which consists of a center electrode and circular outer electrodes of a reaction unit. The charged bio-molecules, DNA, are manipulated by the charge of the electrode in reaction unit. Controlling the induced dynamic electric field between the center electrode and the outer electrodes, concentration / repulsion / manipulation of bio-molecules are enabled at a periphery of electrode. Concentration of the fluorescent DNA at the center electrode is observed by applying +2V. Subsequently, applying -2V, the concentrated DNA is repelled rapidly from the center electrode, which makes dispersion completely in 0.5second. Furthermore, repeated applying +1V/-1V every 5 seconds at each outer electrode, we can circulate the DNA. We also investigate a micro-heater and sensor for DNA manipulation and reaction temperature. The coefficient of heat-resistance and heater temperature characteristic is 0.0043 and 100$^{\circ}C$/sec, respectively.

PZT 압전재료를 이용한 외팔보 구조의 에너지 수집기에 관한 연구 (A Study on Energy Harvester with Cantilever Structure Using PZT Piezoelectric Material)

  • 차두열;이수진;장성필
    • 한국전기전자재료학회논문지
    • /
    • 제24권5호
    • /
    • pp.416-421
    • /
    • 2011
  • Nowadays, the increasing demands upon mobile devices such as wireless sensor networks and the recent advent of low power electrical devices such as MEMS make such renewable power sources attractive. A vibration-driven MEMS lead zirconate titanate $Pb(Zr,Ti)O_3$ (PZT) cantilever device is developed for energy harvesting application. This paper presents a piezoelectric based energy harvester which is suitable for power generating from conventional vibration and has in providing energy for low power electron ic devices. The PZT cantilever is used d33 mode to get the electrical power. The PZT cantilever based energy harvester with the dimension of 7 mm${\times}$3 mm${\times}$0.03 mm is fabricated using micromachining technologies. This PZT cantilever has the mechanical resonance frequency with a 900 Hz. With these conditions, we get experimentally the 37 uW output power from this device with the application of 1g acceleration using the 900 Hz vibration. From this study, we show the feasibility of one of energy harvesting candidates using PZT based structure. This PZT energy harvester could be used for various applications such a batteryless micro sensors and micro power generators.

좌굴과 상변화를 이용한 micro actuator 의 개발 및 해석 (Thermo-pneumatic Micro Actuator with Bi-stable Membrane)

  • 송귀은;김정식;김광호;이윤표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.233-238
    • /
    • 2003
  • A brand-new micro actuator is introduced in this paper. This device is one of thermo-pneumatic actuators, and based on two distinct principles of snap-through buckling and phase change. These coupled phenomena affect each other positively and will outrun the performance of an ordinary thermo-pneumatic actuator. Our efforts are focused on comprehensive analysis on the driving force of the actuator. For the analysis, we explain each principle and offer approximated models for the buckling and phase change. The calculation results from each model are compared to experimental data. The comparison between prediction from models and data from experiments is within the satisfaction in spite of a lot of approximations.

  • PDF

생분해성 마이크로 유체 약물전달장치의 Bupivacaine HCl 전달특성에 대한 계면활성제의 영향 (Effect of Surfactants on the Controlled Release of Bupivacaine HCl from Biodegradable Microfluidic Devices)

  • 양승연;이강주;류원형
    • 대한기계학회논문집B
    • /
    • 제36권5호
    • /
    • pp.545-551
    • /
    • 2012
  • 마이크로 유체구조를 기반으로 하는 약물전달장치는 마이크로 유체 채널형상의 간단한 변형만으로 약물분출량을 쉽게 조절할 수 있는 장점이 있다. 그러나 디바이스 제작에 사용된 생분해성 고분자 85/15poly(lactic-co-glycolic acid) (85/15PLGA)의 소수성 기질 때문에 약물전달 장치내부로의 release medium의 유입이 원활하게 이루어지지 않으며 그 결과, 디바이스의 임플랜트 후 초기의 약물 분출에 영향을 줄 것으로 예상된다. 따라서 surfactant인 polyethylene-glycol600 (PEG600)과 Tween80을 이용하여 micro-channel의 표면처리를 한 디바이스와 surfactant를 사용하지 않은 디바이스를 각각 제작하여 약물 전달 실험을 하였으며, 이를 바탕으로 마이크로 유체 채널의 기하학적 형상에 따른 국소 마취제의 일종인 bupivacaine HCl(BHCl)의 분출속도제어를 입증하였다.

노즐 막힘이 미세 오리피스형 다단 임팩터의 입자 채취 성능에 미치는 영향 (Effect of Particle Clogging in Orifices on the Particle Collection Efficiency of a Micro-Orifice Impactor)

  • 지준호;배귀남;황정호
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.197-205
    • /
    • 2003
  • A cascade impactor is a multistage impaction device used to separate airborne particles into aerodynamic size classes. A micro-orifice impactor uses micro-orifice nozzles to extend the cut sizes of the lower stages to as small as 0.05 ${\mu}{\textrm}{m}$ in diameter without resorting to low pressures or creating excessive pressure drops across the impactor stages. In this work, the phenomenon of particle clogging in micro-orifice nozzles was experimentally investigated for a commercial micro-orifice uniform deposit impactor (MOUDI). It was observed, using an optical microscope, that the micro-orifice nozzles of the final stages were partially clogged due to particle deposition during the aerosol sampling. Therefore the pressure drops across the nozzles were higher than the nominal values given by the manufacturer. To examine the effect of particle clogging in micro-orifice nozzles, the particle collection efficiency of the MOUDI was evaluated using an electrical method for fine particles with diameters in the range of 0.1-0.6 ${\mu}{\textrm}{m}$. The monodisperse liquid dioctyl sebacate (DOS) particles were used as test aerosols. A faraday cage was employed to measure the low-level current of the charged particles upstream and downstream of each stage. It was found that the collection efficiency curves shifted to correspond to smaller orifice sizes, and the 50-% cutoff sizes were much smaller than those given by the manufacturer for the three stages with nozzles less than 400 ${\mu}{\textrm}{m}$ in diameter.

MEMS 기술 기반 이식형 청각 장치용 전자기 엑츄에이터의 소형화 및 최적화 (Miniaturization and Optimization of Electromagnetic Actuators for Implantable Hearing Device Based on MEMS Technology)

  • 김민규;정용섭;조진호
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.99-104
    • /
    • 2018
  • A micro electromagnetic actuator with high vibration efficiency is proposed for use in an implantable hearing device. The actuator, which can be implanted in the middle ear, consists of membranes based on the stainless steel 304 (SUS-304), and other components. In conventional actuators, in which a thick membrane and a silicone elastomer are used, the size reduction was difficult. In order to miniaturize the size of the actuator, it is necessary to reduce the size of the actuation potion that generates the driving force, resulting in reduction of the electromagnetic force. In this paper, the electromagnetic actuator is further miniaturized by the metal membrane and the vibration amplitude is also optimized. The actuator designed according to the simulation results was fabricated by using micro-electro-mechanical systems (MEMS) technology. In particular, a $20{\mu}m$ thick metal membrane was fabricated using the erosion process, which reduced the length of the actuator by more than $400{\mu}m$. In the experiments, the vibration displacement characteristics of the optimized actuator were above 400 nm within the range of 0.1 to 1 kHz when a current of $1mA_{rms}$ was applied to the coil.

셀 가스분석을 이용한 우레탄폼의 열전도도 장기변화 예측 (The Prediction of Time-Dependent Thermal Conductivity of Polyurethane Foam with Cell Gas Analysis)

  • 이효진;전종한;김진석;이진복;강남구
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1367-1372
    • /
    • 2009
  • A proprietary device is adopted to break out the membrane of cell in the rigid polyurethane foam. As it is known, the membrane of cell is hardly tearing-off thoroughly in a mechanical way due to both its elastic characteristic and micro sized pores. In this study, a novel experimental approach is introduced to burst out all gases inside the cells of the rigid polyurethane foam by abrasively grinding micro-cells completely into fine powder. The biggest advantage of this approach is to be capable of releasing all gases out from the cell even in the micro pores. As clearly reflected from the repeatability, the accuracy of the result is highly improved and high confidence in the data sets as well. For the measurements of not only gas composition but partial pressure for each gas simultaneously as well, a precision gas mass spectrometer is used in-line directly to the abrasive grinding device. To control the starting point of the polyurethane foam, all samples were prepared on site in the laboratory. Manufactured time is one of the most critical factors in characterization of cell gas composition because it is known that one of gas composition, especially, carbon dioxide, is diffused out dramatically in a short period of time as soon as it is foamed.

  • PDF

Efficient Measurement System to Investigate Micro-Doppler Signature of Ballistic Missile

  • Choi, In-O;Kim, Kyung-Tae;Jung, Joo-Ho;Kim, Si-Ho;Park, Sang-Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.614-621
    • /
    • 2016
  • Micro-Doppler (MD) shift caused by the micro-motion of a ballistic missile (BM) can be very useful to identify it. In this paper, the MD signatures of three scale-model BMs are investigated using a portable measurement system. The measurement system consists of an X-band 2-by-2 phase comparison mono-pulse radar, and a mechanical device that can impart controlled spinning and coning motions simultaneously to a model to yield the MD signature that replicates the characteristic of each target and the corresponding micro-motion. The coning motion determined the overall period of MD, and the spinning motion increased its amplitude. MD was also dependent on aspect angle. The designed system is portable, and can implement many micro-motions; it will contribute to analysis of MD in various situations.

MEMS 부품을 위한 다결정 박막의 탄성 물성치 추출 시스템과 적용 (Elastic Property Extraction System of Polycrystalline Thin-Films for Micro-Electro-Mechanical System Device and Its Applications)

  • 정향남;최재환;정회택;이준기
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.170-174
    • /
    • 2005
  • A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, effects of kinetics parameters on the extraction of effective elastic properties of polycrystalline thin-films are studied by using statistical method. Effects of the fraction of the potential site($f_p$) among the parameters for deposition process of microstructure on the extraction of effective elastic properties of polycrystalline thin-films are investigated. For this research, polysilicon is applied to this system as the polycrystalline thin-films.

4자유도 비접촉 자기 서스펜션 기구의 설계 및 제어 (The Design and Control of Contact-free Magnetic Suspension System with Four Degrees of Freedom)

  • 이상헌;백윤수
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.871-878
    • /
    • 2003
  • With the development of micro -technology, the demand for micro actual ing device is increasing. But, it is difficult to achieve high resolution and wide bandwidth with the conventional contact systems. So, the contact-free systems which are suspended or levitated by magnetic force or air bearing were proposed. These systems can be applied to high precision stages and alignment apparatuses. This paper describes a magnetically suspended system with four degrees of freedom which are composed of three rotations (roll, pitch, yaw), and one translation ( z). The operating principle and the structure of the system are similar to variable reluctance type electric machines. In this study, the force analysis is executed using magnetic circuit and virtual work principle, and the equations that describe the dynamics of the system are presented. The multivariable PID controller is adapted to the system and the experiment is executed.