• Title/Summary/Keyword: Micro electro mechanical system

Search Result 248, Processing Time 0.029 seconds

Fatigue Life Analysis on Multi-Stacked Film Under Thermal and Residual Stresses (열응력과 잔류응력하의 다층박막의 피로수명 해석)

  • Park Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.526-533
    • /
    • 2005
  • Reliability problem in inkjet printhead, one of MEMS devices, is also very important. To eject an ink drop, the temperature of heater must be high so that ink contacting with surface reaches above $280^{o}C$ on the instant. Its heater is embedded in the thin multi-layer in which several materials are deposited. MEMS processes are the main sources of residual stresses development. Residual stress is one of the factors reducing the reliability of MEMS devices. We measured residual stresses of single layers that consist of multilayer. FE analysis is performed using design of experiment(DOE). Transient analysis for heat transfer is performed to get a temperature distribution. And then static analysis is performed with the temperature distribution obtained by heat transfer analysis and the measured residual stresses to get a stress distribution in the structure. Although the residual stress is bigger than thermal stress, thermal stress is more influential on fatigue life.

Prediction of Residual Stress Distribution in Multi-Stacked Thin Film by Curvature Measurement and Iterative FEA

  • Choi Hyeon Chang;Park Jun Hyub
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1065-1071
    • /
    • 2005
  • In this study, residual stress distribution in multi-stacked film by MEMS (Micro-Electro Mechanical System) process is predicted using Finite Element method (FEM). We evelop a finite element program for residual stress analysis (RESA) in multi-stacked film. The RESA predicts the distribution of residual stress field in multi-stacked film. Curvatures of multi­stacked film and single layers which consist of the multi-stacked film are used as the input to the RESA. To measure those curvatures is easier than to measure a distribution of residual stress. To verify the RESA, mean stresses and stress gradients of single and multi layers are measured. The mean stresses are calculated from curvatures of deposited wafer by using Stoney's equation. The stress gradients are calculated from the vertical deflection at the end of cantilever beam. To measure the mean stress of each layer in multi-stacked film, we measure the curvature of wafer with the left film after etching layer by layer in multi-stacked film.

A Study on the Converter for MEMS Electrostatic Power Generator (MEMS 정전발전기 개발을 위한 변환소자연구)

  • Kang Hee-Jong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.1-7
    • /
    • 2006
  • This is a preliminary study on the MEMS(Miro Electro Mechanical System) electrostatic power generator. It suggested a converting device to change from the electrostatic to the dynamic electricity. To testify, it used Silvaco simulation tools(Athena and Atlas) and fabricated the converting device. The result of the simulation and test it seems to convert electrostatic into dynamic electricity effectively.

Flow Visualization in Microchannel Using Confocal Scanning Microscope (공초점 주사현미경을 통한 미세 유로에서의 유동 가시화)

  • Chang Jun Keun;Park Sung-Jin;Kim Jung Kyung;Han Dong Chul
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • This paper presents the visualization method in which 3-dimensional(3D) microchannel flow can be detected using a confocal scanning microscope. By soft-lithography, we fabricated various Bio-MEMS(Micro Electro-Mechanical System) devices such as a disposable microchip for a flow cytometer and a micro-mixer, which have 3D structures. Injecting aqueous fluorescent solution in the microfluidic devices, we measured the flow in a steady state by the confocal scanning microscope. At first, we explain the principle of the confocal scanning microscope. And then we show the results from 3D visualization of microscopic flow structures using the confocal scanning microscope.

  • PDF

Study on the integration of a micro lens on a 2-DOF in-plane positioning actuator (2-자유도 정밀구동기와 마이크로렌즈의 집적화에 관한 연구)

  • 김재흥;김용권
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.32-33
    • /
    • 2000
  • 최근 디지털 정보 처리 기술의 획기적인 발전과 함께 저가의 반도체 레이저의 개발로 말미암아 광기록 장치(optical pickup device) 및 고속 광통신(optical fiber communication)분야에 응용을 위한 레이저 광학 시스템에 대한 연구가 활발하다. 광신호의 커플링(coupling) 및 스위칭(switching)을 기반으로 하는 이러한 광학 시스템은 일반적으로 광신호의 변조를 위한 광학 요소와 광학 요소의 공간적 제어를 위한 정밀 구동기로 구성되는데, 기존의 상용 시스템의 경우에는 독립적으로 기 제작된 광학 요소와 정밀 구동기를 사후에 조립하는 방법으로 소기의 목적을 달성하였다. 이와 같은 경우 제작에 많은 노력과 비용이 요구되며, 성능의 획기적인 향상을 기대하기 어려우므로 최근에는 Optical MEMS 혹은 MOEMS(Micro-Opto-Electro-Mechanical System)로 대변되는 마이크로머시닝기술(micromachining technology)을 이용한 초정밀 광학계의 제작 기술을 통하여 기존 시스템의 한계를 극복하고자 하는 노력이 다각도로 모색되고 있다. (중략)

  • PDF

A micro wind sensor fabricated using MEMS technology (MEMS 기술을 이용한 초소형 풍향 풍속 센서)

  • Yoo, Eun-Shil;Shin, Kyu-Sik;Cho, Nam-Kyu;Pak, Jung-Ho;Lee, Dae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1468-1469
    • /
    • 2008
  • 기상관측 분야에서는 풍속센서의 소형화 요구가 커지고 있어 Air flow sensor를 이용한 MEMS(Micro Electro Mechanical System) 풍향 풍속센서의 응용연구가 활발하다. MEMS 풍향 풍속 센서는 수 mm 크기를 가지면서도 바람의 세기와 함께 방향을 측정하여야 하는데, 센서 칩이 노출되어 있어 외부환경으로부터 영향을 받기 때문에 센서소자의 내오염성과 내구성 확보가 중요하다. 따라서 본 연구에서는 절연막으로 비점착성의 테프론 막을 적용하여 외부환경으로부터 영향을 줄일 수 있는 열감지 방식의 MEMS 풍향 풍속 센서 칩을 제작하였다. 테프론 코팅막을 이용한 풍향 풍속 센서는 0.1m/s의 resolution을 가지며, 최대 15m/s까지 측정이 가능하여, 오염에 강하고 발수성을 센서를 제작하였다.

  • PDF

Miniaturization and Optimization of Electromagnetic Actuators for Implantable Hearing Device Based on MEMS Technology (MEMS 기술 기반 이식형 청각 장치용 전자기 엑츄에이터의 소형화 및 최적화)

  • Kim, Min-Kyu;Jung, Yong Sub;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • A micro electromagnetic actuator with high vibration efficiency is proposed for use in an implantable hearing device. The actuator, which can be implanted in the middle ear, consists of membranes based on the stainless steel 304 (SUS-304), and other components. In conventional actuators, in which a thick membrane and a silicone elastomer are used, the size reduction was difficult. In order to miniaturize the size of the actuator, it is necessary to reduce the size of the actuation potion that generates the driving force, resulting in reduction of the electromagnetic force. In this paper, the electromagnetic actuator is further miniaturized by the metal membrane and the vibration amplitude is also optimized. The actuator designed according to the simulation results was fabricated by using micro-electro-mechanical systems (MEMS) technology. In particular, a $20{\mu}m$ thick metal membrane was fabricated using the erosion process, which reduced the length of the actuator by more than $400{\mu}m$. In the experiments, the vibration displacement characteristics of the optimized actuator were above 400 nm within the range of 0.1 to 1 kHz when a current of $1mA_{rms}$ was applied to the coil.

A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays (경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal (Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정)

  • Kim, Jung-Sik;Kim, Bum-Joon
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.

Elastic Property Extraction System of Polycrystalline Thin-Films for Micro-Electro-Mechanical System Device and Application to Polycrystalline Materials (MEMS 부품을 위한 다결정 박막의 탄성 물성치 추출 시스템과 다결정 재료의 적용)

  • Jung H. N.;Choi J. H.;Chung H. T.;Lee J. K.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.19-22
    • /
    • 2004
  • A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is already developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, the effective elastic properties of polysilicon, $BaTiO_3\;and\;ZrTiO_4$ are extracted using this system and by employing the fraction of the potential site($f_P$) as a kinetics parameter for the microstructure evolution, the statistical tendency of these materials is studied.

  • PDF