• Title/Summary/Keyword: Micro drop fluidized reactor

Search Result 3, Processing Time 0.021 seconds

Tuning of Electro-optical Properties of Nano-structured SnO2:Ga Powders in a Micro Drop Fluidized Reactor

  • Lim, Dae Ho;Yang, Si Woo;Yoo, Dong June;Lee, Chan Gi;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.259-266
    • /
    • 2019
  • Tuning of electro-optical properties of nano-structured $SnO_2:Ga$ powders in a micro drop fluidized reactor (MDFR) was highly effective to enhance the activities of powders to be used as sensor materials. The tuning was conducted continuously in a facile one-step process during the formation of powders. The microscopic hydrodynamic forces affected the band gap structure and charge transfer of $SnO_2:Ga$ powders through the oxygen and interfacial tin vacancies by providing plausible pyro-hydraulic conditions, which resulted in the decrease in the electrical resistance of the materials. The analyses of room-temperature photoluminescence (PL) spectra and FT-IR exhibited that the tuning could improve the surface activities of $SnO_2:Ga$ powders by adjusting the excitation as well as separation of electrons and holes, thus maximizing the oxygen vacancies at the surface of the powders. The scheme of photocatalytic mechanism of $SnO_2:Ga$ powders was also discussed.

Characteristics of Continuous Preparation of ZnO Powder in a Micro Drop/bubble Fluidized React (마이크로 액적/기포 유동반응기에서 ZnO 입자의 연속제조 특성)

  • Lee, Seung Ho;Yang, Si Woo;Lim, Dae Ho;Yoo, Dong Jun;Lee, Chan Ki;Kang, Gyung Min;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.597-602
    • /
    • 2015
  • Characteristics of continuous preparation of ZnO powder were investigated in a micro drop/bubble fluidized reactor of which diameter and height were 0.03 m and 1.5 m, respectively. The flow rate of carrier gas for transportation of precursors to the reactor was 6.0 L/min and the concentration of Zn ion in the precursor solutions was 0.4 mol/L, respectively. Effects of reaction temperature (973 K~1,273 K) and flow rate of micro bubbles (0~0.4 L/min) on the pore characteristics of prepared ZnO powder were examined. The optimum reaction temperature for the maximum porosity in the ZnO powder was 1,073 K within this experimental condition. The mean size of ZnO powder prepared continuously in the reactor decreased but the surface of the powder became smooth, with increasing reaction temperature. The injection of micro bubbles into the reactor could enhance the formation of pores in the powder effectively, and thus the mean BET surface area could be increased by up to 58%. The mean size of prepared ZnO powder was in the range of $1.25{\sim}1.75{\mu}m$ depending on the reaction temperature.

Characteristics of Nano-structured SiO2:Zn Hollow Powders Prepared in the Micro Drop Fluidized Reactor (MDFR) Process (미세액적 유동반응기 공정에서 연속제조된 나노구조 SiO2:Zn 원환형 입자의 특성)

  • Yang, Si Woo;Kang, Yong;Kang, Ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.585-591
    • /
    • 2018
  • Characteristics of nano-structured $SiO_2:Zn$ hollow powders prepared in the micro drop fluidized reactor process were investigated with respect to bandgap energy and surface activity. The $SiO_2:Zn$ hollow powders were successfully prepared continuously in the one step process with reasonable production efficiency, with varying the amount of THAM (tris(hydroxymethyl)-aminomethane) additive and concentration of $Zn^{2+}$ ions. The doping of $Zn^{2+}$ ions into $SiO_2$ lattice led to the reduction of bandgap energy by forming the acceptor level of $Zn^{2+}$ below the conduction band of $Si^{4+}$ ions. The hollow shape also contributed to reduce the bandgap energy of $SiO_2:Zn$ powders. The doping of $Zn^{2+}$ ions into $SiO_2$ hollow powders could enhance the surface activity by forming SiO-H stretching and oxygen vacancies at the surface of $SiO_2:Zn$ powders.