• 제목/요약/키워드: Micro bolometer

검색결과 19건 처리시간 0.02초

높은 열저항 계수를 가지는 비냉각형 적외선 열영상 이미지 센서용 MDTF(Metal-dielectric Thin Film)에 관한 연구 (A Study on the MDTF for Uncooled Infrared Ray Thermal Image Sensors with High Thermal Coefficient of Resistance)

  • 정은식;정세진;강이구;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.366-371
    • /
    • 2012
  • In this paper, fabricated by MEMS uncooled micro-bolometer detector for the study in the infrared sensitivity enhancement. Absorption layer SiOx-Metal series MDTF (metal-dielectric thin film) by high absorption rate and has a high thermal coefficient of resistance, low noise characteristics were implemented. Then MDTF were made in a vacuum deposition method. And MDTF for the analysis of the physical properties of silicon wafers were fabricated, TCR (temperature coefficient of resistance) value was made in order to measure the glass wafer and FT-IR (Fourier Transform Infrared spectroscopy) values were made in order to measure the germanium window. The analyzed results of MDTF -3 [%/K] has more characteristics of the TCR. And 8~12 um wavelength region close to 70% in the absorption characteristic.

고해상도 열영상 구현을 위한 마이크로 볼로미터의 픽셀 구조 및 특성 연구 (A Study on the Design of Thermal Isolation of Micro Bolometer Membrane for Thermal Image)

  • 남태진;이정훈;정은식;강태영;강이구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.200-200
    • /
    • 2010
  • 열영상의 해상도 증가 시 야기되는 감도저하를 해결하고자 단위 픽셀의 크기를 줄이고 필팩터 향상을 위한 2앵커, 4앵커 구조를 제안하고 앵커 구조에서 Leg 구성물질의 두께변화에 따른 온도 변화 및 열전도도 특성을 실험을 통해 최적화 된 열영상을 구현한다.

  • PDF

비정질 실리콘 희생층을 이용한 니켈산화막 볼로미터 제작 (Fabrication of Nickel Oxide Film Microbolometer Using Amorphous Silicon Sacrificial Layer)

  • 김지현;방진배;이정희;이용수
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.379-384
    • /
    • 2015
  • An infrared image sensor is a core device in a thermal imaging system. The fabrication method of a focal plane array (FPA) is a key technology for a high resolution infrared image sensor. Each pixels in the FPA have $Si_3N_4/SiO_2$ membranes including legs to deposit bolometric materials and electrodes on Si readout circuits (ROIC). Instead of polyimide used to form a sacrificial layer, the feasibility of an amorphous silicon (${\alpha}-Si$) was verified experimentally in a $8{\times}8$ micro-bolometer array with a $50{\mu}m$ pitch. The elimination of the polyimide sacrificial layer hardened by a following plasma assisted deposition process is sometimes far from perfect, and thus requires longer plasma ashing times leading to the deformation of the membrane and leg. Since the amorphous Si could be removed in $XeF_2$ gas at room temperature, however, the fabricated micro-bolomertic structure was not damaged seriously. A radio frequency (RF) sputtered nickel oxide film was grown on a $Si_3N_4/SiO_2$ membrane fabricated using a low stress silicon nitride (LSSiN) technology with a LPCVD system. The deformation of the membrane was effectively reduced by a combining the ${\alpha}-Si$ and LSSiN process for a nickel oxide micro-bolometer.

Wide-Band Measurements of Antenna-Coupled Microbolometers for THz Imaging

  • Tamminen, Aleksi;Ala-Laurinaho, Juha;Mallat, Juha;Luukanen, Arttu;Grossman, Erich N.;Raisanen, Antti V.
    • Journal of electromagnetic engineering and science
    • /
    • 제10권3호
    • /
    • pp.132-137
    • /
    • 2010
  • We present results of room-temperature characterization of lithographically manufactured antenna-coupled NbN micro-bolometers. The bolometers are assembled together with a hyper-hemispherical Si lens to couple the incident radiation to the bolometer from the back-side of the substrate. The bolometers are designed to operate at 300~1,000 GHz and they are characterized at 321~782 GHz. Radiation patterns are measured at 321 GHz, 400 GHz, 654 GHz, and at 782 GHz. The frequency dependency of the beamwidth is studied with several azimuthal beam profile measurements at 321~500 GHz.

적외선 마이크로 볼로미터를 위한 $Si_{1-x}Sb_x$ 박막의 특성 (The characterization of the $Si_{1-x}Sb_x$ thin films for infrared microbolometer)

  • 이동근;류상욱;양우석;조성목;전상훈;류호준
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.13-17
    • /
    • 2009
  • we have studied characterization of microbolometer based on the co-sputtered silicon-antimony ($Si_{1-x}Sb_x$) thin film for infrared microbolometer. We have investigated the resistivity and the temperature coefficient of resistance (TCR) with annealing. We deposited the films using co-sputtering method at $200^{\circ}C$ in the Ar environment. The Sb concentration has been adjusted by applying variable DC power from Sb targets. TCR of deposited $Si_{1-x}Sb_x$ films have been measured the range of -2.3~-2.8%/K. The resistivity of the film is low but TCR is higher than the other bolometer materials. Resistivity of the films has not been affected hugely according to the low annealing temperature however the resistivity has been dramatically decreased over $250^{\circ}C$. It is caused of a phase change due to the rearrangement of Si and Sb atoms during crystallization process of the films.

  • PDF

Silicon Prism-based NIR Spectrometer Utilizing MEMS Technology

  • Jung, Dong Geon;Son, Su Hee;Kwon, Sun Young;Lee, Jun Yeop;Kong, Seong Ho
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.91-95
    • /
    • 2017
  • Recently, infrared (IR) spectrometers have been required in various fields such as environment, safety, mobile, automotive, and military. This IR dispersive sensor detection method of substances is widely used. In this study, we fabricated a silicon (Si) prism-based near infrared (NIR) spectrometer utilizing micro electro mechanical system (MEMS) technology. Si prism-based NIR spectrometer utilizing MEMS technology consists of upper, middle, and lower substrates. The upper substrate passes through the incident IR ray selectively. The middle substrate, acting as a prism, disperses and separates the incident IR beam. The lower substrate has an amorphous Si (a-Si)-based bolometer array to detect the IR spectrum. The fabricated Si prism-based NIR spectrometer utilizing MEMS technology has the advantage of a simple structure, easy fabrication steps, and a wide NIR region operating range.

마이크로 볼로미터 어레이의 모놀로식 공정을 위한 ohmic contact 최적화 구조 설계에 대한 연구 (A Study on the Design of Optimized Ohmic Contact Structure for Micro Bolometer Monolithic Process)

  • 김범준;고수빈;정은식;강태영;강이구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.201-201
    • /
    • 2010
  • 볼로미터 제작 공정 중 One step via 공정 시 via hole 모양에 의해 정기적 연결 및 구조적 안정성에 문제를 해결하기 위하여 다른 via 식각 방식으로 공정을 진행하였으며 그에 따른 via 공정 차이에 대한 결과를 연구하였다.

  • PDF

글루코오스 농도 측정을 위한 볼로미터 타입의 적외선 센서 제작 (The fabrication of bolometric IR detector for glucose concentration detection)

  • 최주찬;정호;박건식;박종문;구진근;강진영;공성호
    • 센서학회지
    • /
    • 제17권4호
    • /
    • pp.250-255
    • /
    • 2008
  • A vanadium pentoxide ($V_2O_5$)-based bolometric infrared (IR) sensor has been designed and fabricated using micro electro mechanical systems (MEMS) technology for glucose detection and its resistive characteristics has been illustrated. The proposed bolometric infrared sensor is composed of the vanadium pentoxide array that shows superior temperature coefficient of resistance (TCR) and standard silicon micromachining compatibility. In order to achieve the best performance, deposited $V_2O_5$ thin film is optimized by adequate rapid thermal annealing (RTA) process. Annealed vanadium oxide thin film has demonstrated a linear characteristic and relatively high TCR value (${-4}%/^{\circ}C$). The resistance of vanadium oxide is changed by IR intensity based on glucose concentration.

Improved Responsivity of an a-Si-based Micro-bolometer Focal Plane Array with a SiNx Membrane Layer

  • Joontaek, Jung;Minsik, Kim;Chae-Hwan, Kim;Tae Hyun, Kim;Sang Hyun, Park;Kwanghee, Kim;Hui Jae, Cho;Youngju, Kim;Hee Yeoun, Kim;Jae Sub, Oh
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.366-370
    • /
    • 2022
  • A 12 ㎛ pixel-sized 360 × 240 microbolometer focal plane array (MBFPA) was fabricated using a complementary metaloxide-semiconductor (CMOS)-compatible process. To release the MBFPA membrane, an amorphous carbon layer (ACL) processed at a low temperature (<400 ℃) was deposited as a sacrificial layer. The thermal time constant of the MBFPA was improved by using serpentine legs and controlling the thickness of the SiNx layers at 110, 130, and 150 nm on the membrane, with response times of 6.13, 6.28, and 7.48 msec, respectively. Boron-doped amorphous Si (a-Si), which exhibits a high-temperature coefficient of resistance (TCR) and CMOS compatibility, was deposited on top of the membrane as an IR absorption layer to provide heat energy transformation. The structural stability of the thin SiNx membrane and serpentine legs was observed using field-emission scanning electron microscopy (FE-SEM). The fabrication yield was evaluated by measuring the resistance of a representative pixel in the array, which was in the range of 0.8-1.2 Mohm (as designed). The yields for SiNx thicknesses of SiNx at 110, 130, and 150 nm were 75, 86, and 86%, respectively.