• Title/Summary/Keyword: Micro Vickers Hardness

Search Result 226, Processing Time 0.028 seconds

Hydrogen Embrittlement Evaluation of Subsurface Zone in 590DP Steel by Micro-Vickers Hardness Measurement (미소경도 측정에 의한 590DP강 Subsurface Zone 내 수소취성 평가)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.581-586
    • /
    • 2011
  • This study describes a hydrogen embrittlement evaluation of the subsurface zone in 590DP steel by micro-Vickers hardness measurement. The 590DP steel was designed to use in high-strength thin steel sheets as automotive materials. The test specimens were fabricated to 5 series varying the chemical composition through the process of casting and rolling. Electrochemical hydrogen charging was conducted on each specimen with varying current densities and charging times. The relationship between the embrittlement and hydrogen charging conditions was established by investigating the metallography. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of the subsurface zone in addition to the microscopic investigation. The micro-Vickers hardness increased with the charging time at the surface. However, the changing ratio and maximum variation of hardness with depth were nearly the same value for each test specimen under the current density of 150 mA/$cm^2$ and charging time of 50 hours. Consequently, it appears that hydrogen embrittlement in 590DP steel can be evaluated by micro-Vickers hardness measurement.

Weibull Statistical Analysis of Micro-Vickers Hardness using Monte-Carlo Simulation (몬테카를로 시뮬레이션에 의한 미소 비커스 경도의 Weibull 통계 해석)

  • Kim, Seon-Jin;Kong, Yu-Sik;Lee, Sang-Yeal
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.346-352
    • /
    • 2009
  • In the present study, the Weibull statistical analysis using the Monte-Carlo simulation has been performed to investigate the micro-Vickers hardness measurement reliability considering the variability. Experimental indentation test were performed with a micro-Vickers hardness tester for as-received and quenching and tempering specimens in SCM440 steels. The distribution of micro-Vickers hardness is found to be 2-parameter Weibull distribution function. The mean values and coefficients of variation (COV) for both data set are compared with results based on Weibull statistical analysis. Finally, Monte-Carlo simulation was performed in order to evaluate the effect of sample size on the micro-Vickers hardness measurement reliability. For the parent distribution with shape parameter 30.0 and scale parameter 200.0 (COV=0.040), the number of sample data required to obtain the true Weibull parameters was founded by 20. For the parent distribution with shape parameter 10.0 and scale parameter 200.0 (COV=0.1240), the number of sample data required to obtain the true Weibull parameters was founded by 30.

The effect of wear on the damage of slitting knife (Slitting Knife의 손상에 미치는 마모의 영향)

  • Nam, Ki-Woo;Kim, Cheol-Soo;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.5-11
    • /
    • 2016
  • This study analyzed the damage to a slitting knife after cutting steel sheets. Damages to the structure were observed and wear tests were conducted. In addition, the degradation on the damaged and undamaged parts was compared with a micro Vickers hardness test. Weibull statistical analysis was carried out in order to evaluate the reliability of the micro Vickers hardness measured data. Spalling of the edge portion occurred by degradation during use over a long period. Rough parts in the specimens were caused by damage because the slitting knife was used for 1 year. The friction coefficient and wear loss at the damaged parts of the knife edge were slightly larger from shock due to repetitive cutting operation. The micro Vickers hardness followed a two-parameter Weibull probability distribution.

A Behavior of Embrittlement at the Subsurface Zones of Multiphase Steels Charged with Hydrogen (수소주입시킨 다상조직강의 Subsurface Zone 내 취성화 거동)

  • Kang, Kae-Myung;Park, Jae-Woo;Choi, Jong-Un
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • In the present work, it was investigated a behavior of hydrogen embrittlement at the subsurface zones of 590 DP steels by using the micro-Vickers hardness test. The micro-Vickers hardnessess of DP steels were measured to evaluate the degree of embrittlement as the effective hardening depths of subsurface zones with hydrogen charging conditions. The results showed that the distributions of micro-Vickers hardness in width varied from maximum hardness 239.5 Hv to minimum hardness 174 Hv, while the depth of effective hardening layer at the subsurface zones of DP steels was from $320{\mu}m$ to $460{\mu}m$ with hydrogen charging conditions, respectively. It was proposed that the distribution of microhardness be used as the evaluation index of the degree of embrittlement. But the variations of martensite volume fractions were not affected along depth of hardening at the same changing time, hydrogen charging times were appeared as an effective factor of the degree of embrittlement. Therefore, the micro-Vickers hardness test is an attractive tool for evaluation of hydrogen embrittlement at the subsurface zones of these DP steels.

A study on wear damage of SKD11 steel material for a cutting mold jig (SKD11 절단금형치구용 소재의 마모손상에 관한 연구)

  • Nam, Ki-Woo;Kim, Cheol-Su;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.5-13
    • /
    • 2016
  • This study is on wear damage of the material for a molding machine that be used at finally cutting of metal beam made in roll forming process of vehicle bump beam process line. SKD11 steel was used with the material for cutting mold jig. In the cutting mold jig, Ti diffusion heat treatment after vacuum heat treatment was carried out for upgrade of surface hardness and anti-wear. Also, the heat treatments by various methods were performed to compare the wear damage degree against above the existing heat treatment. Wear loss and friction coefficient were obtained from wear test. And, micro Vickers hardness values were compared with damaged parts or not of cutting mold jig. Micro Vickers hardness value appeared higher at the undamaged part by Ti diffusion heat treatment. The micro Vickers hardness well followed a two-parameter Weibull probability distribution.

Failure Analysis and Weibull Statistical Analysis according to Impact Test of the Angular Pin for Injection Molding Machines (사출금형기계용 앵귤러핀의 충격시험에 따른 파손분석과 와이블 통계 해석)

  • Kim, Cheol-Su;Nam, Ki-Woo;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, failure analysis of the angular pin for molding machines to aluminum component molding was carried out. SM45C steel was used for the angular pin, it was surface hardened by the induction surface hardening heat treatment. The cross section of damaged angular pin was observed, and micro Vickers hardness value from the fractured part was measured. Brittle fracture was occurred from the fracture surface of angular pin, therefore, impact toughness value was evaluated by V-notch Charpy impact test. It was confirmed that the impact absorption energy was high when was tempered at a high temperature for a long time, and the toughness was slightly increased. Also, 2-parameter Weibull statistical analysis was investigated in order to evaluate the reliability of the measured micro Vickers hardness values and absorbed energy. The micro Vickers hardness and absorbed energy well followed a two-parameter Weibull probability distribution, respectively. The reverse design against angular pin was proposed as possible by using test results.

Sintering Behavior of Zircon with SiO2 (Silica가 첨가된 지르콘 소결거동)

  • Lee, Keun-Bong;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.604-609
    • /
    • 2008
  • The sintering behavior of zircon with silica was investigated. Zircon with 5 vol% of sedimentation $SiO_2$ resulted in the apparent density of $4.45\;g/cm^3$, the diametral tensile strength of $12.125\;kgf/cm^2$, and the micro Vickers hardness of 1283 HV. The dissociation temperature and mechanical characteristics of the $ZrSiO_4$ were changed with different kinds of $SiO_2$. $SiO_2$ addition prevented dissociation of $ZrSiO_4$. Zircon with 5 vol% of sedimentation $SiO_2$ and with 5 vol% of fused $SiO_2$ resulted in increased diametral tensile strength and increased micro Vickers hardness by suppression of $ZrSiO_4$ dissociation and low temperature liquid $SiO_2$ formation. Zircon with fumed $SiO_2$ and quartz $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of cristobalite and quartz phase formation and high temperature liquid $SiO_2$ formation. Zircon with 10 vol% of $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of weak particle coupling due to excess formation of liquid $SiO_2$.

Evaluation on Degradation of Cr-Mo-V Steel by Micro-Vickers Hardness Measurement (미소 비커스경도에 의한 Cr-Mo-V강의 경년열화 평가)

  • Kim, Jung-Ki;Nahm, Seung Hoon;Kim, Amkee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.54-61
    • /
    • 1998
  • Since Cr-Mo-V steel has excellent fracture and creep properties at elevated temperature, they are extensively used as steam turbine components such as the turbine rotor. However, the turbine rotor steel used to suffer material degradation during long term service. Therefore, the assessment of the safety and residual life of the turbine rotor is periodically required during service. One of the most convenient techniques for that is the hardness method mainly due to its simplicity and nondestructive characteristics. In this research, six specimens with different aging times of turbine rotor steel were artificially prepared by an isothermal heat treatment at $630^{\circ}C$. The micro Vickers hardnesses of specimens were measured at room temperature. The relationships between the fracture properties and the hardness ratio were investigated. And also an indirect method to evaluate the residual life of degraded turbine rotor was proposed based on the micro Vickers hardness measurement.

  • PDF

The Change of Microstructures According to the Charging Amounts of Hydrogen in High Strength DP Steels and TRIP Steel (고강도 DP강과 TRIP강의 표면 수소 주입량에 따른 수소취성평가)

  • Lee, Chul-Chi;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • Hydrogen charging was electrochemically conducted at high strength DP steels and TRIP steel with varying charging time. The penetration depths and the mechanical properties with charging conditions were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of subsurface zone in addition to the microscope investigation. It was shown that the hydrogen amounts decreased in DP steels and TRIP steel with increasing hydrogen charging time. As shown by micro-Vickers hardness test and small punch test results, micro-Vickers hardness and SP energy for DP steels and TRIP steel decreased with increasing hydrogen charging time, for constant value of charging current density. SEM investigation results for the hydrogen contained samples showed that the major fracture behavior was brittle fracture which results in dimples on fractured surface and the size of dimples were decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause for the fracture of high strength steels and also micro-Vickers hardness test and small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels.

Intermetallic Compounds Behavior at Laser Overlay Interface of Aluminum and Fe-based Powder (Al-Fe 레이저 오버레이층 경계면에서의 금속간화합물 거동)

  • Kang, Nam-Hyun;Yoo, Yeon-Gon;Lee, Chang-Woo;Kim, Jeong-Han
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.51-56
    • /
    • 2007
  • A $CO_2$ laser overlay was conducted by using a Fe-based powder on the AC2B aluminum substrate. Cracks and intermetallic compounds (IMC) were observed inconsistently along the interface between the overlay and post-molten layer. A scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) detected some Fe-rich IMC ($Fe_3Al$, FeAl) as well as the brittle Al-rich IMC ($Fe_2Al_5,\;FeAl_3$). Micro vickers hardness proved the formation of Al-rich IMC ($FeAl_3$) along the interface by showing HV0.1 $800{\sim}900$. Furthermore, nano indentation was successfully applied to investigate the behavior of IMC more precisely than the micro vickers hardness.