• Title/Summary/Keyword: Micro Vibration Measurement

Search Result 59, Processing Time 0.023 seconds

Micro-vibration Isolation Performance Verification for the Passive Vibration Isolator using SMA Mesh Washer (SMA 메쉬 와셔를 적용한 수동형 진동절연기의 미소진동 절연성능 검증)

  • Kwon, Sung-Cheol;Jeon, Su-Hyeon;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.900-903
    • /
    • 2014
  • Fly-wheel, Gimbal antenna, CMG, Spaceborne cyrocooler generate micro-vibration during their on-orbit operation as well as implementing their own function. To comply with the mission requirement of high resolution observation satellite, additional technical efforts have been required to isolate the micro-vibration derived from such payloads by applying the vibration isolator. In this study, we proposed a passive isolator using SMA mesh washer, which guarantees the structural safety of both micro-vibration disturbance source and itself under harsh launch vibration loads without an additional holding mechanism and the micro-vibration isolation performance on orbit environment. To verify the micro-vibration isolation performance of the proposed vibration isolator, we performed the micro-vibration isolation measurement test using the dedicated micro-vibration measurement device proposed in this study.

  • PDF

On-orbit Micro-vibration Isolation Performance Verification for Spaceborne Cryocooler Passive Vibration Isolator Using SMA Mesh Washer (SMA 메쉬 와셔를 적용한 우주용 냉각기 수동형 진동절연기의 궤도 미소진동 절연성능 검증)

  • Kwon, Seong-Cheol;Jeon, Su-Hyeon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.24-32
    • /
    • 2015
  • Pulse tube-type spaceborne cryocooler is widely used to cool down the infrared sensor of observation satellites. However, such cryocooler also generates micro-vibration which is the one of main sources to seriously affect the image quality during its on-orbit operation. Therefore, to comply with the mission requirement of high resolution observation satellite, additional technical efforts have been required. In this study, we proposed a spaceborne cryocooler passive vibration isolator using SMA mesh washer, which guarantees the structural safety of both the micro-vibration disturbance source and itself under harsh launch vibration loads without an additional holding mechanism and the micro-vibration isolation performance on orbit environment. To verify the micro-vibration isolation performance of the proposed vibration isolator, we performed the micro-vibration isolation measurement test using the dedicated micro-vibration measurement device proposed in this study.

Development of Error Compensation Algorithm for Image based Measurement System (미세부품 영상 측정시 진동에 의한 오차 보상 알고리즘 개발)

  • Pyo Chang Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, we studied a vibration problem that is critical and common to most precision measurement systems. For micro mechanical part measurements, results obtained from the vision-based precision measurement system may contain errors due to the vibration. In order to defeat this generic problem, for the current study, a PC based image processing technique was used first, to assess the effect of the vibration to the precision measurement and second, to develop an in-situ calibration algorithm that automatically compensate the measurement results in real time. We used a set of stereoscopic CCD cameras to acquire the images for the dimensional measurement and the reference measurement. The mapping function was obtained through the in-situ calibration to compensate the measurement results and the statistical analysis for the actual results is provided in the paper. Based on the current statistical study, it is expected to obtain high precision results for the micro measurement systems.

The Micro Electromagnetic Force Measurement of Voice-coil Actuator using Semiconductor Piezoresistive Type Vibration Sensor (실리콘 압저항형 진동 센서를 이용한 Voice-coil형 구동기의 미소 전자력 측정)

  • Gwon, Gi-Jin;Lee, Gi-Chan;Park, Se-Gwang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.147-152
    • /
    • 1999
  • Semiconductor piezoresistive type vibration sensor was fabricated by using semiconductor process and micromachining technology. To measure the micro electromagnetic force between coil and magnet, fabricated vibration sensor was used. Toapply micro electromagnetic force produced from the micro exciter, small-sized NdFeB permanent magnet was attached on the mass of the fabricated vibration sensor. The measured electromagnetic force are about 5~180dyne when the applied sinusoidal current of 1KHz in the range of 1.5~8mA. The measurement of micro electromagnetic forcewas performed by changing the distance between coil and magnet. Output characteristics of micro electromagnetic force according to the applied coil current were linear. Furthermore, output results were used to get the transfer constant that is important to decide the efficiency and the performance of the coil and magnet.

  • PDF

Micro-Vibration Measurement, Analysis and Attenuation Techniques of Reaction Wheel Assembly in Satellite (인공위성 반작용휠의 미소진동 측정, 해석 및 저감 기술)

  • Oh, Shi-Hwan;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.126-132
    • /
    • 2002
  • Jitter induced from several payloads on-board satellites degrade the performance of pointing accuracy and attenuate the resolving power of highly-precise camera image such as KOMPSAT II. In this paper, we introduce a micro-vibration measurement technique, analysis of dynamic characteristics, and modeling method for a reaction wheel assembly which is one of the major sources of jitter in satellites and an effective vibration reduction techniques are considered. Based on these techniques, vibration measurement and passive control were performed with an micro-vibration generator which was designed to have similar dynamic performances with an actual reaction wheel assembly above 50Hz.

An Experimental Study on Micro-vibration Measurement Methods of a Reaction Wheel (반작용휠의 미소진동 측정법에 관한 실험적 연구)

  • Kim, Dae-Kwan;Oh, Shi-Hwan;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.828-833
    • /
    • 2011
  • A reaction wheel assembly(RWA) is the largest disturbance source that can induce high frequency micro-vibration on an optical payload of satellites. To ensure a tight pointing-stability budget of satellites, the RWA disturbance effect on spacecraft should be accurately analyzed and evaluated for whole design phases. For this purpose, the micro-vibration disturbance of RWA should be precisely measured. In the present study, two measurement methods on RWA micro-vibration disturbances are compared and investigated. One is a free run-down speed test and the other is a constant speed test. The micro-vibration data measured by the two methods are analyzed in terms of spectrum characteristics, static and dynamic imbalance values, and root sum square(RSS) values. The analysis results show that both methods can measure very similar results in time and frequency domains and that the free run-down speed method is more adequate in respects to wheel friction modeling, noise rejection of imbalance and RSS peak evaluation.

Micro-vibration Isolation Performance of X-band Antenna using Blade Gear (블레이드 기어를 적용한 X-밴드 안테나 미소진동 절연성능)

  • Jeon, Su-Hyeon;Kwon, Seong-Cheol;Kim, Tae-Hong;Kim, Yong-Hoon;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.893-899
    • /
    • 2014
  • X-band antenna has been widely used to effectively transmit the high resolution image data from the observation satellite to the ground station. To achieve above mission, X-band antenna is mainly composed of the 2-axis gimbal system using stepping motors and gears. However, the micro-vibration induced by the stepping motor actuation and the imperfect gear teeth alignment during this on-orbit operation is the main source of image quality degradation. In this paper, X-band antenna combined with a blade gear for micro-vibration isolation was suggested and investigated. The structural safety of the blade gear with low rotational stiffness was confirmed by structure analysis based on the derived torque budget. The isolation performance of the X-band antenna with the blade gear was verified through micro-vibration measurement test using the dedicated micro-vibration measurement device proposed in this study.

  • PDF

A Study on a micro dynamic tester development for a micro property measurement of a micro metal specimen (마이크로 금속 박판의 동적 물성치 측정을 위한 마이크로 동적 시험 장치 개발에 관한 연구)

  • Lee, Jin-Pyo;Lee, Hye-Jin;Hwang, Jai-Hyuk;Lee, Nak-Kyu;Bae, Jae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.163-168
    • /
    • 2006
  • In a micro-unit of electronic-machine, vibration can be excited by a small impact, and this vibration acts as a fatigue load. To measure the vibration effect on the micro unit, a micro dynamic tester is needed to test a micro specimen. In this paper, it has confirmed a movement of the PZT(piezo actuator) to use a sine signal. And, it has confirmed a fracture of specimens by using a tension-tension input signal in PZT. A metal-material property in the micro scale has been tested to compare with the macro scale. A fatigue test has been conducted by using PZT actuator to give a bending-tension effect.

  • PDF

Micro-vibration Isolation Performance of X-band Antenna Using Blade Gear (블레이드 기어를 적용한 2축 짐발 구동 안테나의 미소진동 절연성능)

  • Jeon, Su-Hyeon;Kwon, Seong-Cheol;Kim, Tae-Hong;Kim, Yong-Hoon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.313-320
    • /
    • 2015
  • A 2-axis gimbal-type X-band antenna has been widely used to effectively transmit the high resolution image data from the observation satellite to the desired ground station. However, a discontinuous stepper motor activation for rotating the pointing mechanism in azimuth and elevation directions induces undesirable micro-vibration disturbances which can result in the image quality degradation of a high-resolution observation satellite. To enhance the image quality of the observation satellite, attenuating the micro-vibration induced by an activation of the stepper motor for rotational movements of the antenna is important task. In this study, we proposed a low-rotational-stiffness blade gear applied to the output shaft of the stepper motor to obtain the micro-vibration isolation performance. The design of the blade gear was performed through the structure analysis such that this gear is satisfied with the margin of safety rule under the derived torque budget. In addition, the micro-vibration isolation performance of the blade gear was verified through the micro-vibration measurement test using the dedicated micro-vibration measurement device proposed in this study.

Measurement on Vibration Mode of Tire Wheel as a Energy Source of Micro Power (초소형 동력 에너지원으로서의 타이어 휠 진동 모드 측정)

  • Shin, You-Hwan;Lee, Yoon-Pyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.64-72
    • /
    • 2009
  • In order to convert efficiently vibration energy of a car tire wheel into electrical power by using piezoelectric materials, the design of the materials must be performed for the dynamic characteristics of the piezoelectric materials to be matched with them of the vibration energy sources well. An accelerometer was installed on the tire wheel with a slip ring to investigate the dynamic mode of the wheel as one of the vibration energy sources. During road test, the measurement on the vibration mode of the tire wheel was performed with variations of car speed and road condition. The experimental data were analyzed details for availability as a micro power source for wireless TPMS(Tire Pressure Monitoring System).