• 제목/요약/키워드: Micro Speaker Diaphragm

검색결과 14건 처리시간 0.029초

진동판의 빗살주름무늬 형상에 따른 마이크로스피커의 음향특성에 관한 연구 (A Study on the Acoustical Properties of Micro-speaker according to Comb Teeth Shape of the Diaphragm)

  • 이태근;김병삼;조태제
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.124-131
    • /
    • 2008
  • There are many factors which affect the acoustical properties of a micro-speaker. Among the factors, the shape of the diaphragm is considered in this study. As an investigating method, the finite element methods and measurement techniques applied to study the acoustical properties according to diaphragm shape. In order to vary the stiffness of the diaphragm, the some patterns of comb teeth, such as the angle and the number of comb teeth, are applied to diaphragm. We can confirm that the change of the stiffness by the changing diaphragm shape affects the vibration and sound properties of the speaker. As a result, the reduction of the angle of the comb teeth increases the diaphragm stiffness and shifts the resonance frequency to a higher frequency range. The number of the comb teeth is related to the stiffness of the edge part.

마이크로스피커에서 공명진동수와 QTS 사이의 연관성 (Relationship Between the Resonance Frequency and QTS for Microspeaker)

  • 오세진
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.403-409
    • /
    • 2011
  • Micro speakers are used to reproduce sound in small electric and information and communications devices, such as cellular phones, PMPs, and MP3 players. The acoustical properties and sound quality, which are changed due to the decreased size of the speaker, are often adjusted varying the type and thickness of the diaphragm. The most widely used diaphragm material is thin polymer. It was previously reported by the author of this paper that the resonance frequency of a micro speaker is changed by the type and thickness of a polymer diaphragm. In this paper, the frequency response near the resonance frequency of a micro speaker was studied as functions of the type and thickness of the polymer diaphragm. While $R_{max}$ and $R_{DC}$ were affected by the type and thickness, an analysis of the electrical impedance curve revealed that $R_o(= R_{max}/R_{DC})$ and ${\Delta}f$ were not changed. Thus, $Q_{TS}$ which was function of $R_o$, ${\Delta}f$, and the resonance frequency, is only related to the resonance frequency. The increase of the resonance frequency led to a proportional rise of $Q_{TS}$. The change of the frequency response near the resonance frequency was not dependent on the type or thickness of the polymer diaphragm, but was affected by the resonance frequency.

진동판의 재질에 따른 마이크로스피커의 음향특성연구 (Studying Acoustical Properties of Micro-Speaker as a Function of Diaphragm Material)

  • 오세진
    • 한국음향학회지
    • /
    • 제25권5호
    • /
    • pp.222-228
    • /
    • 2006
  • 본 연구에서는 마이크로스피커에 사용되는 진동판의 재질에 따른 음향특성을 연구하였다. 진동판의 재료가 달라지면 영률과 밀도가 바뀌게 되고, 그로 인하여 재질에 따라서 음속과 스티프니스 값이 변하게 된다. 그 결과로써, 공명진동 수는 PEl, PPS, PET, PEN의 순서로 점차 높게 나타났으며, 이는 이론적으로 예측된 결과와 정확히 일치하였다. 진동판의 재질은 저음으로부터 최저공명진동수 ($f_s$)까지 음압이 증가하는 변화율이나 최고한계공명진동수 ($f_h$)에는 영향을 주지 않았다. 그러나 임피던스 특성에서 얻어진 공명진동수가 낮은 재질의 순서대로 저음영역이 강하게 나타났다.

마이크로스피커 진동판의 등가탄성과 공명진동수의 연관성 (Relationship Between Geometrical Stiffness of Diaphragm and Resonance Frequency for Micro-speaker)

  • 오세진
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.640-644
    • /
    • 2010
  • Information technology devices, such as cellular phones, MP3s and so on, due to restrictions of space, require thin and small micro-speakers to generate sound. The reduction of the size of micro-speakers has resulted in the decrease of sound quality, due to such factors as frequency range and sound pressure level. In this study, the acoustical properties of oval microspeakers has been studied as a function of pattern shape on the diaphragm. The other conditions of micro-speakers, except for the pattern, was not changed. When the pattern is present on the diaphragm and the shape of pattern was a whirlwind, the resonance frequency was reduced due to the decrease of tensile strength of diaphragm. The patterns presented in the semi-minor axis of diaphragm did not effect a change of resonance frequency. However, increasing the number of patterns in the semimajor axis of diaphragm became a reason for the decrease of resonance frequency on edge side. When the depth of pattern on edge side was increased, the resonance frequency was decreased due to reduction of geometrical stiffness. If the height of edge and dome were increased, the resonance frequency and geometrical stiffness rapidly increased. After reaching the maximum values, they began to decrease with the continuous increase of height.

마이크로 스피커 다이어프램의 진동해석 (Vibration Analysis of Micro Speaker Diaphragm)

  • 홍도관;우병철;안찬우;한근조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.551-554
    • /
    • 2005
  • This study uses a characteristic function to explain correlations between the objective function and design variables. Analysis of means and table of orthogonal array were carried out. The change of shape of diaphragm, thickness of diaphragm and voice coil weight based on the table of orthogonal array is made. Therefore this study carried to decide shape of diaphragm, voice coil weight and thickness of diaphragm for minimizing 1st natural frequency and maximizing 2nd natural frequency of diaphragm using design of experiments and characteristic function with constraints. we showed improved design factors that minimized 1st natural frequency and maximized 2nd natural frequency of diaphragm.

  • PDF

마이크로 스피커 진동판의 형상설계에 따른 진동특성 고찰 (Investigation on Vibration Characteristics of Micro Speaker Diaphragms for Various Shape Designs)

  • 김경민;김성걸;박근
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.790-796
    • /
    • 2013
  • Micro-speaker diaphragms play an important role in generating a desired audio response. The diaphragm is generally a circular membrane, and the cross section is a double dome, with an inner dome and an outer dome. To improve the sound quality of the speaker, a number of corrugations may be included in the outer dome region. In this study, the role of these corrugations is investigated using two kinds of finite element method (FEM) calculations. Structural FEM modeling was carried out to investigate the change in stiffness of the diaphragm when the corrugations were included. Modal FEM modeling was then carried out to compare the natural frequencies and the resulting vibrational modes of the plain and corrugated diaphragms. The effects of the corrugations on the vibration characteristics of the diaphragm are discussed.

마이크로 스피커 다이아프램의 형상설계에 관한 연구 (A Study on the Shape Design of Micro Speaker Diaphragm)

  • 홍도관;우병철;김동영;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.775-780
    • /
    • 2005
  • This study uses a characteristic function to explain correlations between the objective function and design variables. Analysis of means and table of orthogonal array were carried out. The change of shape of diaphragm, thickness of diaphragm and voice coil weight based on the table of orthogonal array Is made. Therefore this study carried to decide design variables for minimizing 1st natural frequency and maximizing 2nd natural frequency of diaphragm using design of experiments and characteristic function with constraints. we showed improved design variables.

마이크로 스피커 진동판에 대한 분할진동 모드와 열전달의 관계 분석 (Relationship Analysis of Break-up Mode and Heat Transfer of Micro-Speaker Diaphragm)

  • 김현갑;김희식
    • 대한기계학회논문집A
    • /
    • 제41권4호
    • /
    • pp.333-336
    • /
    • 2017
  • 스피커 진동판은 고유 특성에 의해 분할진동을 발생 시킨다. 이 분할진동은 진동판의 형상 변화를 가져올 정도로 뚜렷한 영향을 주는데, 본 논문에서는 IT 분야의 첨병인 스마트 폰을 포함한 초박형 멀티미디어 기기에서 많이 사용되는 마이크로 스피커를 그 대상으로 삼는다. 마이크로 스피커는 일반적인 스피커와 다른 평판형의 구조적인 형태와 공간적인 제약이 존재한다. 특히 구동 공간이 밀폐형으로 설계되어 무빙 코일에서 발생하는 열의 냉각이 열악하고 보조적인 서스펜션 구조를 갖추기 어렵다. 본 연구에서는 진동판의 열전달과 분할진동 모드의 연관성을 연구한다. 이를 위해 진동판의 레이저 스캔을 통한 분할진동 측정과 열화상 카메라 촬영을 통한 열변화 측정의 두 단계로 나누어 실험을 진행한다. 이를 통해 특정 주파수 범위에서 분할진동 모드와 열전달 형태를 비교함으로써, 열화상 카메라를 통한 촬영 결과로 진동판 분할진동 모드의 경향성을 빠르게 예상할 수 있어, 마이크로 스피커의 최적 설계에 도움이 되는 지표를 제공할 수 있을 것으로 기대한다.