• Title/Summary/Keyword: Micro Shell

Search Result 105, Processing Time 0.025 seconds

Warpage Simulation by the CTE mismatch in Blanket Structured Wafer Level 3D packaging

  • Kim, Seong Keol;Jang, Chong-Min;Hwang, Jung-Min;Park, Man-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.168-172
    • /
    • 2013
  • In 3D wafer-stacking technology, one of the major issues is wafer warpage. Especially, The important reason of warpage has been known due to CTE(Coefficient of Thermal Expansion) mismatch between materials. It was too hard to choose how to make the FE model for blanket structured wafer level 3D packaging, because the thickness of each layer in wafer level 3D packaging was too small (micro meter or nano meter scale) comparing with diameter of wafer (6 or 8 inches). In this study, the FE model using the shell element was selected and simulated by the ANSYS WorkBench to investigate effects of the CTE on the warpage. To verify the FE model, it was compared by experimental results.

Electrochemical characteristics of active carbon prepared by chemical activation for anode of lithium ion battery (이차전지 음극용 화학적 활성화법으로 제조된 활성탄의 전기화학적 특성)

  • Lee, Ho-Yong;Kim, Tae-Yeong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.480-487
    • /
    • 2015
  • In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of $1900{\sim}2500m^2/g$ and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.

Thermostable Adsorption Filter Immobilized with Super Activated Carbons by Quinoline Soluble Isotropic Pitch Binder (I-a Novel Adsorption Filter)

  • Park, Yeong-Tae;Im, Chul-Gyou;Kim, Yeong-Tae;Rhee, Bo-Sung
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.198-201
    • /
    • 2009
  • Among other filters such as light filter, wave filter, air filter, ultra filter and filter paper, a novel adsorption filter from thermostable polyester nonwoven fabrics immobilized with functional super activated carbon by means of quinoline soluble, activateable isotropic pitch binder were developed in this study. The activated carbon precursor is available in the market branded as coconut shell based activated carbon(CCS-AC) produced by Dongyang Carbon Co. Ltd. BET-surface area of this precursor was $1,355\;m^2/g$, after KOH-activation it increased over $2,970\;m^2/g$ and was named as super activated carbon. In the preliminary research, this precursor was impregnated with $PdCl_2$(0.188 wt%) $KMnO_4$(3 wt%) and redox-agent(CuCl2, 0.577 wt%) in order to promote TOF up to 100/h and Selectivity up 99% and patented as a functional AC for the ethylene adsorption. The enhancement of the isotropic pitch binder to the AC-immobilized adsorption filter was BET-surface area upgraded by $266\;m^2/g$ and promoted the Iodine- and MB-adsorption by 1.4 times, respectively and also micro pore wide ranges < $5{\AA}{\sim}30\;{\AA}$ >.

Non-local orthotropic elastic shell model for vibration analysis of protein microtubules

  • Taj, Muhammad;Majeed, Afnan;Hussain, Muzamal;Naeem, Muhammad N.;Safeer, Muhammad;Ahmad, Manzoor;Khan, Hidayat Ullah;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.245-253
    • /
    • 2020
  • Vibrational analysis in microtubules is examined based on the nonlocal theory of elasticity. The complete analytical formulas for wave velocity are obtained and the results reveal that the small scale effects can reduce the frequency, especially for large longitudinal wave-vector and large circumferential wave number. It is seen that the small scale effects are more significant for smaller wave length. The methods and results may also support the design and application of nano devices such as micro sound generator etc. The effects of small scale parameters can increase vibrational frequencies of the protein microtubules and cannot be overlooked in the analysis of vibrating phenomena. The results for different modes with nonlocal effect are checked.

Effective electromechanical coupling coefficient of adaptive structures with integrated multi-functional piezoelectric structural fiber composites

  • Koutsawa, Yao;Tiem, Sonnou;Giunta, Gaetano;Belouettar, Salim
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.501-515
    • /
    • 2014
  • This paper presents a linear computational homogenization framework to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) of adaptive structures with piezoelectric structural fiber (PSF) composite elements. The PSF consists of a silicon carbide (SiC) or carbon core fiber as reinforcement to a fragile piezo-ceramic shell. For the micro-scale analysis, a micromechanics model based on the variational asymptotic method for unit cell homogenization (VAMUCH) is used to evaluate the overall electromechanical properties of the PSF composites. At the macro-scale, a finite element (FE) analysis with the commercial FE code ABAQUS is performed to evaluate the effective EMCC for structures with the PSF composite patches. The EMCC is postprocessed from free-vibrations analysis under short-circuit (SC) and open-circuit (OC) electrodes of the patches. This linear two-scale computational framework may be useful for the optimal design of active structure multi-functional composites which can be used for multi-functional applications such as structural health monitoring, power harvest, vibration sensing and control, damping, and shape control through anisotropic actuation.

Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites

  • Hanif, Asad;Lu, Zeyu;Cheng, Yu;Diao, Su;Li, Zongjin
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.99-113
    • /
    • 2017
  • The effects of different lightweight functional fillers on the properties of cement-based composites are investigated in this study. The fillers include fly ash cenospheres (FACs) and glass micro-spheres (GMS15 and GMS38) in various proportions. The developed composites were tested for compressive, flexural and tensile strengths at 10 and 28-day ages. The results indicated that both FACs and GMS38 are excellent candidates for producing strong lightweight composites. However, incorporation of GMS15 resulted in much lower specific strength values (only up to $13.64kPa/kg\;m^3$) due to its thinner shell thickness and lower isostatic crushing strength value (2.07 MPa). Microstructural analyses further revealed that GMS38 and GMS15 were better suited for thermal insulating applications. However, higher weight fraction of the fillers in composites leads to increased porosity which might be detrimental to their strength development.

Design and Prototyping of a Novel Type Piezoelectric Micro-pump

  • Oh, Jin-Heon;Lim, Jong-Nam;Lee, Seung-Su;Heo, Jun;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.181-185
    • /
    • 2008
  • Using the extensional vibration mode of PZT ring, a piezopump is successfully made. The PZT ring is polarized with thickness direction. The traveling extensional wave along the circumference of the ring is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. The proposed piezopump is consisted of coaxial cylindrical shells that are bonded piezoelectric ceramic ring. The pump takes an unobtrusive operation into the simple displacing mechanism using peristaltic traveling waves without the physical moving parts. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump is about 580 ${\mu}l/min$ in flow rate with the highest pressure level of 0.85 kPa, when the driving voltage is 150 $V_p$, 57 kHz.

Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach

  • Yan, Yunrui
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.477-491
    • /
    • 2022
  • In the present study, the effects of thermal loading on the buckling and resonance frequency of graphene platelets (GPL) reinforced nano-composites are examined. Functionally graded (FG) material properties are considered in thickness direction for the thermal responses of the composite. The equivalent material properties are obtained using Halphin-Tsai nano-mechanical model for composite layers. Moreover, the effects of nano-scale sizes are taken into account, employing functionally modified couple stress (FMCS) parameter. In this regard, for the first time, it is demonstrated that at certain values of GPL weight fraction, thermal buckling occurs. In obtaining results of vibrational behavior, both analytical solution and deep neural network (DNN) methods are used. The DNN method needs low computational costs to predict the resonance behavior. A comprehensive parametric study is conducted to indicate the effects of several geometrical, material, and loading conditions on the vibrational and buckling behavior of cylindrical shell structures made of GPL-nanocomposites. It is shown that the effect of temperature change on the occurrence of buckling is vital while it has a negligible impact on the resonance frequency of the structure. Moreover, the size-dependency of the results is demonstrated, and it cannot be neglected in nano-scales.

Induction of Sex Maturation and Growth in Comb Pen Shells, Atrina pectinata per Microalgae Classes (미세조류 종류에 따른 키조개, Atrina pectinata의 성장 및 성숙 유도)

  • Moon, Tae-Seok;Jo, Pil-Gue;Kim, Byoung-Hak;Park, Ki-Yeol;Ku, Hag-Dong;Shin, Yun-Kyung;Lym, Young-Sub
    • The Korean Journal of Malacology
    • /
    • v.25 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • We investigated the degree of obesity, histological development stages of gonads and sexual maturation induction rates of comb pen shell, Atrina pectinata, per the type of micro-algae supplied. Terms of maturation by singular or mixed supply of microalgae, it was found that maturation of the female was the quickest at 60.0% by the Tetraselmis tetrathele (Tet). experiment group followed by 57.1% by the Chlorella ellipsoidea (Chl). experiment group and 16.7% by the Phaeodactylum tricornutum (Pha). experiment group. However, there were no significant differences between Tet. experiment group and Chl. experiment group. As for the male, maturation was the quickest at 60.0% by the Tet. experiment group followed by 16.7% by the Chl. experiment group and 14.3% by the Pha. experiment group. In light of these results, Tet. is concluded to be a very useful feed organism in breeding the mother comb pen shells. Upon completion of the experiment, the sexual maturation induction rate for the female was found to be the highest at 82.0% in the Tet. experiment group followed by 72.0% by the Chl. experiment group, 64.0% by the Pha. experiment group and 58.0% by the mixed micro-algae experiment group. During the period of experiment, the survival rate was the highest at 94.4% by the mixed micro-algae experiment group followed by 90.0% by the Pha. experiment group, 83.1% by the Tet. experiment group and 78.8% by the Chl. experiment group.

  • PDF

A Scientific Analysis of Dancheong Pigments at Yaksajeon Hall in Gwallyoungsa Temple (창녕 관룡사 약사전 단청안료의 과학적 분석)

  • Han, Min-su;Kim, Jin-hyoung;Lee, Jang-jon
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.18-31
    • /
    • 2014
  • This study aims at identifying of characteristics and types of the pigments used for Dancheong(surface decorative and protective pigments) of Yaksajeon Hall in Gwallyoungsa Temple using a Micro-XRF, XRD, SEM-EDS and thereafter, comparing it with the pigments of the wall painting in the same building and with Dancheong pigments of Daeungjeon Hall. The results can be briefly summarized as two points. First, different types of pigments for red, green and white colours had been applied based on different parts of the building and more than two different pigments had been mixed to produce various colours in so me parts. Second, scientific analysis has confirmed that raw minerals for each colour groups are: Cinnabar, minium and Hematite for red; white clay and oyster shell white($Al_2O_3{\cdot}SiO_2{\cdot}4H_2O$) for white; Atacamite and Celadonite for green; carbon(C) for black; Yellow Ocher for yellow; and Lazulite for blue. Comparative analysis of such result with that of the wall paintings and of Dancheong of Daeungjeon Hall has revealed that similar minerals had been used in overall except that several different pigments had been added or removed for making green, white and yellow colour groups in some parts. In conclusion, the result has displayed that painters had used different ways of producing pigments by a type of painting or a building within the same period or for the buildings in the same buddhist temple compound.