• 제목/요약/키워드: Micro Rain Radar (MRR)

검색결과 6건 처리시간 0.016초

Measurements of Cloud Raindrop Particles Using the Ground Optical Instruments and Small Doppler Radar at Daegwallyeong Mountain Site

  • Oh, Sung-Nam;Jung, Jae-Won
    • 대한원격탐사학회지
    • /
    • 제29권3호
    • /
    • pp.293-306
    • /
    • 2013
  • Hydrometeor type and Drop Size Distribution (DSD) in cloud are the fundamental properties that may help explain the rain formation processes and determine the parameters of radar meteorology. This study presents a preliminary analysis of hydrometeor types and DSD data of cloud measured with a PARSIVEL (PARticle SIze and VELocity) optical disdrometer at the site of Cloud Physics Observation System (CPOS, $37^{\circ}41^{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m from sea level) in Daegwallyeong mountainside of Korea. The method has been validated by comparing the observed rainfall rates with the computed ones from the fitted distribution, using the physical data such as DSD, terminal velocity, and rain intensity which were measured by a Micro-Rain Radar (MRR) and a PARSIVEL optical disdrometer. The analysis period started in three cases: on rainy days with light rain (15.5 mm), moderate rain (76 mm), and heavy rain (121 mm), from March to November 2007, respectively.

강수의 물리적 특성 이해를 위한 MRR 및 PASIVEL 우적계의 관측사례 분석 (Analysis of Observational Cases Measured by MRR and PARSIVEL Disdrometer for Understanding the Physical Characteristics of Precipitation)

  • 차주완;장기호;오성남;최영진;정진임;정재원;양하영;배진영;강선영
    • 대기
    • /
    • 제20권1호
    • /
    • pp.37-47
    • /
    • 2010
  • The methods measuring the precipitation drop size distribution(hereafter referred to as DSD) at Cloud Physics Observation System (CPOS) in Daegwallyeong are to use PARSIVEL (PARticle SIze and VELocity) disdrometer (hereafter referred to as PARSIVEL) and Micro Rain Radar (hereafter referred to as MRR). First of all, PARSIVEL and MRR give good correlation coefficients between their rain rates and those of rain gage: $R^2=0.93$ and 0.91, respectively. For the DSD, the rain rates are classified in 3 categories (Category 1: rr (Rain Rate) ${\leq}0.5\;mm\;h^{-1}$, Category 2: $0.5\;mm\;h^-1$ < rr < $4.0\;mm\;h^{-1}$, Category 3: rr ${\geq}4\;mm\;h^{-1}$). The shapes of PARSIVEL and MRR DSD are relatively most similar in category 2. In addition, we retrieve the vertical rain rate and liquid water content from MRR under melting layer, calculated by Cha et al's method, in Daegwallyeong ($37^{\circ}41{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m ASL, mountain area) and Haenam ($34^{\circ}33^{\prime}N$, $126^{\circ}34^{\prime}E$, 4.6 m ASL, coast area). The vertical variations of rain rate and liquid water content in Daegwallyeong are smaller than those in Haenam. We think that this different vertical rain rate characteristic for both sites is due to the vertical different cloud type (convective and stratiform cloud seem dominant at Haenam and Daegwallyeong, respectively). This suggests that the statistical precipitation DSD model, for the application of weather radar and numerical simulation of precipitation processes, be considered differently for the region, which will be performed in near future.

연직강우레이더와 광학우적계 관측자료를 이용한 2012년 여름철 남해안 강우사례 분석 (Analysis of Summer Rainfall Case over Southern Coast Using MRR and PARSIVEL Disdrometer Measurements in 2012)

  • 문지영;김동균;김연희;하종철;정관영
    • 대기
    • /
    • 제23권3호
    • /
    • pp.265-273
    • /
    • 2013
  • To investigate properties of cloud and rainfall occurred at Boseong on 10 July 2012, Raindrop Size distributions (RSDs) and other parameters were analyzed using observation data collected by Micro Rain Radar (MRR) and PARticle SIze and VELocity (PARSIVEL) disdrometer located in the National center for intensive observation of severe weather at Boseong in the southwest of the Korean peninsula. In addition, time series of RSD parameters, relationship between reflectivity-rain rate, and vertical variation of rain rates-fall velocities below melting layer were examined. As a result, good agreements were found in the reflectivity-rain rate time series as well as their power relationships between MRR and PARSIVEL disdrometer. The rain rate was proportional to reflectivity, mean diameter, and inversely proportional to shape (${\mu}$), slope (${\Lambda}$), intercept ($N_0$) parameter of RSD. In comparison of the RSD, as rain rate was increased, the slope of RSD became less steep and the mean diameter became larger. Also, it was verified that reflectivities are classified in three categories (Category 1: Z (reflectivity) > 40 dBZ, Category 2: 30 dBZ < Z < 40 dBZ, Category 3: Z < 30 dBZ). As reflectivity was increased, rain rate was intensified and larger raindrops were existed, while reflectivity was decreased, shape (${\mu}$), slope (${\Lambda}$), intercept ($N_0$) parameter of RSD were increased. We expected that these results will lead to better understanding of microphysical process in convective rainfall system occurred during short-term period over Korean peninsula.

구름물리 관측시스템 및 산출물 검정 (Cloud Physics Observation System (CPOS) and Validation of Its Products)

  • 장기호;오성남;정기덕;양하영;이명주;정진임;조요한;김효경;박균명;염성수;차주완
    • 대기
    • /
    • 제17권1호
    • /
    • pp.101-108
    • /
    • 2007
  • To observe and analyze the cloud and fog characteristics, the METeorological Research Institute (METRI) has established the Cloud Physics Observation System (CPOS) by implementing the cloud observation instruments: Forward Scattering Spectrometer Probe (FSSP), PARticle SIze and VELocity (PARSIVEL), Microwave Radiometer (MWR), Micro Rain Radar (MRR), and 3D-AWS at the Daegwallyeong Enhanced Mountain Weather Observation Center. The cloud-related products of CPOS and the validation status for the size distribution of FSSP, the precipitable water of MWR, and the rainfall rate of MRR and PARSIVEL are described.

장마전선 상에서 발생한 중규모 호우계 구조에 대한 연구 (Structure of Mesoscale Heavy Precipitation Systems Originated from the Changma Front)

  • 박창근;이태영
    • 대기
    • /
    • 제18권4호
    • /
    • pp.317-338
    • /
    • 2008
  • Analyses of observational data and numerical simulations were performed to understand the mechanism of MCSs (Mesoscale Convective Systems) occurred on 13-14 July 2004 over Jindo area of the Korean Peninsula. Observations indicated that synoptic environment was favorable for the occurrence of heavy rainfall. This heavy rainfall appeared to have been enhanced by convergence around the Changma front and synoptic scale lifting. From the analyses of storm environment using Haenam upper-air observation data, it was confirmed that strong convective instability was present around the Jindo area. Instability indices such as K-index, SSI-index showed favorable condition for strong convection. In addition, warm advection in the lower troposphere and cold advection in the middle troposphere were detected from wind profiler data. The size of storm, that produced heavy rainfall over Jindo area, was smaller than $50{\times}50km^2$ according to radar observation. The storm developed more than 10 km in height, but high reflectivity (rain rate 30 mm/hr) was limited under 6 km. It can be judged that convection cells, which form cloud clusters, occurred on the inflow area of the Changma front. In numerical simulation, high CAPE (Convective Available Potential Energy) was found in the southwest of the Korean Peninsula. However, heavy rainfall was restricted to the Jindo area with high CIN (Convective INhibition) and high CAPE. From the observations of vertical drop size distribution from MRR (Micro Rain Radar) and the analyses of numerically simulated hydrometeors such as graupel etc., it can be inferred that melted graupels enhanced collision and coalescence process of heavy precipitation systems.

대관령 구름물리관측시스템 산출물 평가 및 FSSP를 이용한 시정환산 시험연구 (Intercomparison of Daegwallyeong Cloud Physics Observation System (CPOS) Products and the Visibility Calculation by the FSSP Size Distribution during 2006-2008)

  • 양하영;정진임;장기호;차주완;정재원;김유철;이명주;배진영;강선영;김금란;최영진;최치영
    • 대한원격탐사학회지
    • /
    • 제26권2호
    • /
    • pp.65-73
    • /
    • 2010
  • 구름과 강수특성을 분석하기 위해 대관령에 구름물리관측시스템(Cloud physics Observation System, 이하 CPOS)을 2003년부터 운영해 오고 있다. 주요 관측 기기는 다음과 같다: FSSP (Forward Scattering Spectrometer Probe), OPC (Optical Particle Counter), VS (Visibility Sensor), PARSIVEL disdrometer, MWR (Microwave Radiometer), MRR (Micro Rain Radar). 앞의 4개 장비는 지상구름 (안개)과 강수 특성을, 뒤의 2개 장비는 연직구름의 특성을 실시간으로 관측하고 있다. CPOS 산출물을 검증하기 위해 FSSP는 흡습성 물질 시딩 실험 중 OPC와, MWR의 가강수량은 라디오존데와, PARSIVEL과 MRR은 우량계와 비교 연구가 수행되었다. 그 결과를 보면 대부분이 0.7이상의 좋은 상관도를 보인다. 이와 같이 신뢰도를 확보한 CPOS 관측 자료는 구름과 에어로솔의 간접효과나 기상조절 실험에 유용한 자료로 활용될 수 있을 것이다. FSSP의 입자 크기 분포를 시정값으로 환산해 보았으며 FSSP 환산 시정값은 visibility sensors (SVS)와 PWD22 (Present Weather Detect 22)의 시정계 값에 비해 1.7~1.9배 과도한 경향을 보였다. 이는 FSSP에 의해 관측되는 입자 크기($2{\sim}47\;{\mu}m$)의 한계 때문으로 사료된다. 향후 다른 입자크기분포를 측정할 수 있는 장비를 도입하여 추가 분석을 추진할 계획이다.