• Title/Summary/Keyword: Micro Rain Radar (MRR)

Search Result 6, Processing Time 0.016 seconds

Measurements of Cloud Raindrop Particles Using the Ground Optical Instruments and Small Doppler Radar at Daegwallyeong Mountain Site

  • Oh, Sung-Nam;Jung, Jae-Won
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.293-306
    • /
    • 2013
  • Hydrometeor type and Drop Size Distribution (DSD) in cloud are the fundamental properties that may help explain the rain formation processes and determine the parameters of radar meteorology. This study presents a preliminary analysis of hydrometeor types and DSD data of cloud measured with a PARSIVEL (PARticle SIze and VELocity) optical disdrometer at the site of Cloud Physics Observation System (CPOS, $37^{\circ}41^{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m from sea level) in Daegwallyeong mountainside of Korea. The method has been validated by comparing the observed rainfall rates with the computed ones from the fitted distribution, using the physical data such as DSD, terminal velocity, and rain intensity which were measured by a Micro-Rain Radar (MRR) and a PARSIVEL optical disdrometer. The analysis period started in three cases: on rainy days with light rain (15.5 mm), moderate rain (76 mm), and heavy rain (121 mm), from March to November 2007, respectively.

Analysis of Observational Cases Measured by MRR and PARSIVEL Disdrometer for Understanding the Physical Characteristics of Precipitation (강수의 물리적 특성 이해를 위한 MRR 및 PASIVEL 우적계의 관측사례 분석)

  • Cha, Joo-Wan;Chang, Ki-Ho;Oh, Sung-Nam;Choi, Young-Jean;Jeong, Jin-Yim;Jung, Jae-Won;Yang, Ha-Young;Bae, Jin-Young;Kang, Sun-Young
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.37-47
    • /
    • 2010
  • The methods measuring the precipitation drop size distribution(hereafter referred to as DSD) at Cloud Physics Observation System (CPOS) in Daegwallyeong are to use PARSIVEL (PARticle SIze and VELocity) disdrometer (hereafter referred to as PARSIVEL) and Micro Rain Radar (hereafter referred to as MRR). First of all, PARSIVEL and MRR give good correlation coefficients between their rain rates and those of rain gage: $R^2=0.93$ and 0.91, respectively. For the DSD, the rain rates are classified in 3 categories (Category 1: rr (Rain Rate) ${\leq}0.5\;mm\;h^{-1}$, Category 2: $0.5\;mm\;h^-1$ < rr < $4.0\;mm\;h^{-1}$, Category 3: rr ${\geq}4\;mm\;h^{-1}$). The shapes of PARSIVEL and MRR DSD are relatively most similar in category 2. In addition, we retrieve the vertical rain rate and liquid water content from MRR under melting layer, calculated by Cha et al's method, in Daegwallyeong ($37^{\circ}41{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m ASL, mountain area) and Haenam ($34^{\circ}33^{\prime}N$, $126^{\circ}34^{\prime}E$, 4.6 m ASL, coast area). The vertical variations of rain rate and liquid water content in Daegwallyeong are smaller than those in Haenam. We think that this different vertical rain rate characteristic for both sites is due to the vertical different cloud type (convective and stratiform cloud seem dominant at Haenam and Daegwallyeong, respectively). This suggests that the statistical precipitation DSD model, for the application of weather radar and numerical simulation of precipitation processes, be considered differently for the region, which will be performed in near future.

Analysis of Summer Rainfall Case over Southern Coast Using MRR and PARSIVEL Disdrometer Measurements in 2012 (연직강우레이더와 광학우적계 관측자료를 이용한 2012년 여름철 남해안 강우사례 분석)

  • Moon, Ji-Young;Kim, Dong-Kyun;Kim, Yeon-Hee;Ha, Jong-Chul;Chung, Kwan-Young
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.265-273
    • /
    • 2013
  • To investigate properties of cloud and rainfall occurred at Boseong on 10 July 2012, Raindrop Size distributions (RSDs) and other parameters were analyzed using observation data collected by Micro Rain Radar (MRR) and PARticle SIze and VELocity (PARSIVEL) disdrometer located in the National center for intensive observation of severe weather at Boseong in the southwest of the Korean peninsula. In addition, time series of RSD parameters, relationship between reflectivity-rain rate, and vertical variation of rain rates-fall velocities below melting layer were examined. As a result, good agreements were found in the reflectivity-rain rate time series as well as their power relationships between MRR and PARSIVEL disdrometer. The rain rate was proportional to reflectivity, mean diameter, and inversely proportional to shape (${\mu}$), slope (${\Lambda}$), intercept ($N_0$) parameter of RSD. In comparison of the RSD, as rain rate was increased, the slope of RSD became less steep and the mean diameter became larger. Also, it was verified that reflectivities are classified in three categories (Category 1: Z (reflectivity) > 40 dBZ, Category 2: 30 dBZ < Z < 40 dBZ, Category 3: Z < 30 dBZ). As reflectivity was increased, rain rate was intensified and larger raindrops were existed, while reflectivity was decreased, shape (${\mu}$), slope (${\Lambda}$), intercept ($N_0$) parameter of RSD were increased. We expected that these results will lead to better understanding of microphysical process in convective rainfall system occurred during short-term period over Korean peninsula.

Cloud Physics Observation System (CPOS) and Validation of Its Products (구름물리 관측시스템 및 산출물 검정)

  • Chang, Ki-Ho;Oh, Sung-Nam;Jeong, Ki-Deok;Yang, Ha-Young;Lee, Myoung-Joo;Jeong, Jin-Yim;Cho, Yohan;Kim, Hyo-Kyung;Park, Gyun-Myeong;Yum, Seong-Soo;Cha, Joo-Wan
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.101-108
    • /
    • 2007
  • To observe and analyze the cloud and fog characteristics, the METeorological Research Institute (METRI) has established the Cloud Physics Observation System (CPOS) by implementing the cloud observation instruments: Forward Scattering Spectrometer Probe (FSSP), PARticle SIze and VELocity (PARSIVEL), Microwave Radiometer (MWR), Micro Rain Radar (MRR), and 3D-AWS at the Daegwallyeong Enhanced Mountain Weather Observation Center. The cloud-related products of CPOS and the validation status for the size distribution of FSSP, the precipitable water of MWR, and the rainfall rate of MRR and PARSIVEL are described.

Structure of Mesoscale Heavy Precipitation Systems Originated from the Changma Front (장마전선 상에서 발생한 중규모 호우계 구조에 대한 연구)

  • Park, Chang-Geun;Lee, Tae-Young
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.317-338
    • /
    • 2008
  • Analyses of observational data and numerical simulations were performed to understand the mechanism of MCSs (Mesoscale Convective Systems) occurred on 13-14 July 2004 over Jindo area of the Korean Peninsula. Observations indicated that synoptic environment was favorable for the occurrence of heavy rainfall. This heavy rainfall appeared to have been enhanced by convergence around the Changma front and synoptic scale lifting. From the analyses of storm environment using Haenam upper-air observation data, it was confirmed that strong convective instability was present around the Jindo area. Instability indices such as K-index, SSI-index showed favorable condition for strong convection. In addition, warm advection in the lower troposphere and cold advection in the middle troposphere were detected from wind profiler data. The size of storm, that produced heavy rainfall over Jindo area, was smaller than $50{\times}50km^2$ according to radar observation. The storm developed more than 10 km in height, but high reflectivity (rain rate 30 mm/hr) was limited under 6 km. It can be judged that convection cells, which form cloud clusters, occurred on the inflow area of the Changma front. In numerical simulation, high CAPE (Convective Available Potential Energy) was found in the southwest of the Korean Peninsula. However, heavy rainfall was restricted to the Jindo area with high CIN (Convective INhibition) and high CAPE. From the observations of vertical drop size distribution from MRR (Micro Rain Radar) and the analyses of numerically simulated hydrometeors such as graupel etc., it can be inferred that melted graupels enhanced collision and coalescence process of heavy precipitation systems.

Intercomparison of Daegwallyeong Cloud Physics Observation System (CPOS) Products and the Visibility Calculation by the FSSP Size Distribution during 2006-2008 (대관령 구름물리관측시스템 산출물 평가 및 FSSP를 이용한 시정환산 시험연구)

  • Yang, Ha-Young;Jeong, Jin-Yim;Chang, Ki-Ho;Cha, Joo-Wan;Jung, Jae-Won;Kim, Yoo-Chul;Lee, Myoung-Joo;Bae, Jin-Young;Kang, Sun-Young;Kim, Kum-Lan;Choi, Young-Jean;Choi, Chee-Young
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • To observe and analyze the characteristics of cloud and precipitation properties, the Cloud physics Observation System (CPOS) has been operated from December 2003 at Daegwallyeong ($37.4^{\circ}N$, $128.4^{\circ}E$, 842 m) in the Taebaek Mountains. The major instruments of CPOS are follows: Forward Scattering Spectrometer Probe (FSSP), Optical Particle Counter (OPC), Visibility Sensor (VS), PARSIVEL disdrometer, Microwave Radiometer (MWR), and Micro Rain Radar (MRR). The former four instruments (FSSP, OPC, visibility sensor, and PARSIVEL) are for the observation and analysis of characteristics of the ground cloud (fog) and precipitation, and the others are for the vertical cloud characteristics (http://weamod.metri.re.kr) in real time. For verification of CPOS products, the comparison between the instrumental products has been conducted: the qualitative size distributions of FSSP and OPC during the hygroscopic seeding experiments, the precipitable water vapors of MWR and radiosonde, and the rainfall rates of the PARSIVEL(or MRR) and rain gauge. Most of comparisons show a good agreement with the correlation coefficient more than 0.7. These reliable CPOS products will be useful for the cloud-related studies such as the cloud-aerosol indirect effect or cloud seeding. The visibility value is derived from the droplet size distribution of FSSP. The derived FSSP visibility shows the constant overestimation by 1.7 to 1.9 times compared with the values of two visibility sensors (SVS (Sentry Visibility Sensor) and PWD22 (Present Weather Detect 22)). We believe this bias is come from the limitation of the droplet size range ($2{\sim}47\;{\mu}m$) measured by FSSP. Further studies are needed after introducing new instruments with other ranges.