• Title/Summary/Keyword: Micro Powder

Search Result 473, Processing Time 0.027 seconds

Stability and Processing Characteristics of Microencapsulated Squid Liver Oil by Fluidized Bed Coating (오징어 간유 미세캡슐의 유동층 코팅에 따른 품질 특성)

  • Hwang, Sung-Hee;Youn, Kwang-Sup
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.621-625
    • /
    • 2008
  • Squid oil is an abundant source of polyunsaturated fatty acids. This is particularly true for eicosapentaenoic acid and docosahexaenoic acid. The principal objective of this study was to extend the stability and improve the process aptitude of squid liver oil. Fluidized bed coatings were employed for coating with microencapsulated oil. The efficiency of the fluidized bed coating of the microencapsulated powder was over 90%. The apparent density with zein-DP was 0.6 g/mL, thereby indicating that flow ability had been improved as the result of an increase in specific gravity. The solubility of artificial gastric and enteric fluids with HPMC-FCC was 59.9 and 0%, respectively, whereas with zein-DP solubility was 0 and 31.0%, respectively. Polyunsaturated fatty acid retention results demonstrated that zein-DP coating was higher than HPMC-FCC, followed by the microencapsulated squid liver oil method. These results demonstrated that the application of microencapsulation and fluidized bed micro-coating techniques improved the stability and processing compatibility of squid liver oil.

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan-Ho;Kim, Sang-Hoon;Reddy, A.S.;Ha, H.;Park, Jeong-Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.245-245
    • /
    • 2012
  • Syntheses of oxide supported metal catalysts by wet-chemical routes have been well known for their use in heterogeneous catalysis. However, uniform deposition of metal nanoparticles with controlled size and shape on the support with high reproducibility is still a challenge for catalyst preparation. Among various synthesis methods, arc plasma deposition (APD) of metal nanoparticles or thin films on oxide supports has received great interest recently, due to its high reproducibility and large-scale production, and used for their application in catalysis. In this work, Au and Pt nanoparticles with size of 1-2 nm have been deposited on titania powder by APD. The size of metal nanoparticles was controlled by number of shots of metal deposition and APD conditions. These catalytic materials were characterized by x-ray diffraction (XRD), inductively coupled plasma (ICP-AES), CO-chemisorption and transmission electron microscopy (TEM). Catalytic activity of the materials was measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. We found that Au/$TiO_2$ is reactive, showing 100% conversion at $110^{\circ}C$, while Pt/$TiO_2$ shows 100% conversion at $200^{\circ}C$. High activity of metal nanoparticles suggests that APD can be used for large scale synthesis of active nanocatalysts. We will discuss the effect of the structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure

  • Jun, Sang-Ho;Ahn, Jin-Soo;Lee, Jae-Il;Ahn, Kyo-Jin;Yun, Pil-Young;Kim, Young-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.528-538
    • /
    • 2014
  • PURPOSE. The purpose of this prospective study was to evaluate the effectiveness of newly developed autogenous tooth bone graft material (AutoBT)application for sinus bone graft procedure. MATERIALS AND METHODS. The patients with less than 5.0 mm of residual bone height in maxillary posterior area were enrolled. For the sinus bone graft procedure, Bio-Oss was grafted in control group and AutoBT powder was grafted in experimental group. Clinical and radiographic examination were done for the comparison of grafted materials in sinus cavity between groups. At 4 months after sinus bone graft procedure, biopsy specimens were analyzed by microcomputed tomography and histomorphometric examination for the evaluation of healing state of bone graft site. RESULTS. In CT evaluation, there was no difference in bone density, bone height and sinus membrane thickness between groups. In microCT analysis, there was no difference in total bone volume, new bone volume, bone mineral density of new bone between groups. There was significant difference trabecular thickness ($0.07{\mu}m$ in Bio-Oss group Vs. $0.08{\mu}m$ in AutoBT group) (P=.006). In histomorphometric analysis, there was no difference in new bone formation, residual graft material, bone marrow space between groups. There was significant difference osteoid thickness ($8.35{\mu}m$ in Bio-Oss group Vs. $13.12{\mu}m$ in AutoBT group) (P=.025). CONCLUSION. AutoBT could be considered a viable alternative to the autogenous bone or other bone graft materials in sinus bone graft procedure.

Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor

  • Lee, Eunji;Kwon, Soon Hyung;Choi, Poo Reum;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.78-85
    • /
    • 2015
  • Activated carbons (ACs) were prepared by activation of coal tar pitch (CTP) in the range of $700^{\circ}C-1000^{\circ}C$ for 1-4 h using potassium hydroxide (KOH) powder as the activation agent. The optimal activation conditions were determined to be a CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained ACs showed increased pore size distribution in the range of 1 to 2 nm and the highest specific capacitance of 122 F/g in a two-electrode system with an organic electrolyte, as measured by a charge-discharge method in the voltage range of 0-2.7 V. In order to improve the performance of the electric double-layer capacitor electrode, various mixtures of CTP and petroleum pitch (PP) were activated at the optimal activation conditions previously determined for CTP. Although the specific capacitance of AC electrodes prepared from CTP only and the mixtures of CTP and PP was not significantly different at a current density of 1 A/g, the AC electrodes from CTP and PP mixtures showed outstanding specific capacitance at higher current rates. In particular, CTP-PP61 (6:1 mixture) had the highest specific capacitance of 132 F/g, and the specific capacitance remained above 90% at a high current density of 3 A/g. It was found that the high specific capacitance could be attributed to the increased micro-pore volume of ACs with pore sizes from 1 to 2 nm, and the high power density could be attributed to the increased meso-pore volume.

Effect of Sulfurization Temperature on the Properties of Cu2ZnSn(S,Se)4 Thin Films (황화 열처리 온도에 따른 Cu2ZnSn(S,Se)4 박막의 합성 및 특성 평가)

  • Yoo, Yeong Yung;Hong, Chang Woo;Gang, Myeng Gil;Shin, Seung Wook;Kim, Young Baek;Moon, Jong-Ha;Lee, Yong Jeong;Kim, Jin Hyoek
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.613-619
    • /
    • 2013
  • $Cu_2ZnSn(S_x,Se_{1-x})_4$ (CZTSSe) thin films were prepared by sulfurization of evaporated precursor thin films. Precursor was prepared using evaporation method at room temperature. The sulfurization was carried out in a graphite box with S powder at different temperatures. The temperatures were varied in a four step process from $520^{\circ}C$ to $580^{\circ}C$. The effects of the sulfurization temperature on the micro-structural, morphological, and compositional properties of the CZTSSe thin films were investigated using X-ray diffraction (XRD), Raman spectra, field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The XRD and Raman results showed that the sulfurized thin films had a single kesterite crystal CZTSSe. From the FE-SEM and TEM results, the $Mo(S_x,Se_{1-x})_2$ (MoSSe) interfacial layers of the sulfurized CZTS thin films were observed and their thickness was seen to increase with increasing sulfurization temperature. The microstructures of the CZTSSe thin films were strongly related to the sulfurization temperatures. The voids in the CZTSSe thin films increased with the increasing sulfurization temperature.

Photoluminescence of Y3(Al, Ga)5O12:Ce3+ Nanoparticles by a Reverse Micelle Process

  • Kim, Min Yeong;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.31-34
    • /
    • 2013
  • Trivalent cerium-ion-doped $Y_3(Al,\;Ga)_5O_{12}$ nanoparticle phosphor nanoparticles were synthesized using the reverse micelle process. The Ce doped $Y_3(Al,\;Ga)_5O_{12}$ particles were obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase and poly(oxyethylene) nonylphenyl ether (Igepal CO-520) as the non-ionic surfactant. The crystallinity, morphology, and thermal properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were characterized by thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and transmission electron microscopy. The crystallinity, morphology, and chemical states of the ions were characterized; the photo-physical properties were studied by taking absorption, excitation, and emission spectra for various concentrations of cerium. The photo physical properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were studied by taking the excitation and emission spectra for various concentrations of cerium. The average particle size of the synthesized YAG powders was below $1{\mu}m$. Excitation spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ samples were 485 nm and 475 nm, respectively. The emission spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ were around 560 nm and 545 nm, respectively. $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ is a red-emitting phosphor; it has a high efficiency for operation under near UV excitation, and may be a promising candidate for photonic applications.

Adsorption Capacity and Antibacterial Activity of Porous Feldspar Porphyry (다공성 구조가 발달한 장석반암의 흡착과 항균성 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Cho, Jinwoo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • As weathering processes, micro-cavities are formed on the surface of rocks, and in particular, the porous structure is increased in feldspar. Adsorption and antibacterial tests were carried out to clarify the environmental function of porous feldspar porphyry. Almost all the heavy metals were adsorbed in the feldspar filter and the adsorption rate could be controlled by changing the filter length. The shake flask method of fabric coated with 5% and 7% feldspar powder showed very high antibacterial activity of 98% and 99.9%, respectively. The cation exchange capacity at a particle size of $10{\mu}m$ was 114.63 meq/100g probably due to the porous structure. The potential value of porous feldspar porphyry as a resource is sufficient based on the results of the experiment.

A Study of Synthesis of NiCuZn-Ferrite Sintering in Low Temperature by Metal Nitrates and its Electromagnetic Property

  • Kim, Chul Won;Koh, Jae Gui
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.29-39
    • /
    • 2002
  • The initial NiCuZn synthetic ferrite were acquired from thermally decomposing the metal nitrates $Fe(NO_3)_39H_2O, Zn(NO_3)_26H_2O, Ni(NO_3)_26H_2O, and Cu(NO_3)_23H_2O$ at $150^circ{C}$ for 24 hours, and then we calcined the synthetic powder at $500^circ{C}$, pulverized each of those for 3, 6, 9, 12, and 15 hours in a steel ball mill, sintered each at $700^circ{C}$ to $1,000^circ{C}$ for 1 hour, and thus studied their microstructures and electromagnetic properties. We could make the initial specimens chemically bonded in liquidity at a low-temperature $150^circ{C}$, by using the low melting points less than $200^circ{C}$ of the metal nitrates instead of the mechanical ball-mill pulverization, then narrow a distance between the particles into a molecular one, and thus lower the reaction point of sintering by at least $200^circ{C}$ to $300^circ{C}$. Their initial permeability was 50 to 400 and their maximum magnetic induction density and coercive force, 2,400 G and 0.3 Oe to 0.5 Oe respectively, which was similar to those of NiZnCu ferrite synthesized in the conventional process. In the graph of initial permeability by frequencies, a $180^circ{C}$ rotation of the magnetic domains which appears in a broad band of micro-wave before and after the resonance frequency, could be perceived.

An Fundamental Study on the Earth Wall Material Development by using of Lime Composition and Earth (석회복합체와 흙을 이용한 흙벽체 재료 개발에 관한 기초적 연구)

  • Hwang, Hey zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2010
  • Lime was the solidifier mostly used at the fields of construction and civil works in the past. however, the development of Portland cement remarkably reduced the use of it. Recently as the concernment on circumstances gets higher, lime wined attention again as an eco-friendly material and was used at earth-using construction. This study examined the physical and chemical capacity of lime complexes with lime capacity improved, and performed fundamental study on the way to concretize by mixing it with earth. As a result, lime complex pressure strength was lower than cement pressure strength but it showed the possibility that its strength was improved by W/B control. The measurement of XRD after paste formation confirmed a compound generated by the reaction of Ca2+ion and Si, Al, and Fe from pozzolan reaction. A earth wall experiment by using lime complexes and earth showed that the higher, WB or the lower the quantity of unit combined materials, the lower the pressure strength was. The maximum pressure strength was maximum 11MPa when the quantity of unit combined materials was 450. It is because the composed earth particles had a high content of micro powder less than silt, so a lot of combination are demanded to secure fluidity. As a result of peptization experiment, after hardening, the material was not dissolved, which informed of the possibility of use as an outer subsidiary material. If the material is hardened by mold formation method, natural hardening crack appears. Cast expresses smart surface quality and enables to design for multiple purpose. The result shows the possibility of construction of low-story structures by using earth wall made of lime complexes and earth.

Facile in situ Formation of CuO/ZnO p-n Heterojunction for Improved H2S-sensing Applications

  • Shanmugasundaram, Arunkumar;Kim, Dong-Su;Hou, Tian Feng;Lee, Dong Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.156-161
    • /
    • 2020
  • In this study, hierarchical mesoporous CuO spheres, ZnO flowers, and heterojunction CuO/ZnO nanostructures were fabricated via a facile hydrothermal method. The as-prepared materials were characterized in detail using various analytical methods such as powder X-ray diffraction, micro Raman spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy. The obtained results are consistent with each other. The H2S-sensing characteristics of the sensors fabricated based on the CuO spheres, ZnO flowers, and CuO/ZnO heterojunction were investigated at different temperatures and gas concentrations. The sensor based on ZnO flowers showed a maximum response of ~141 at 225 ℃. The sensor based on CuO spheres exhibited a maximum response of 218 at 175 ℃, whereas the sensor based on the CuO/ZnO nano-heterostructure composite showed a maximum response of 344 at 150 ℃. The detection limit (DL) of the sensor based on the CuO/ZnO heterojunction was ~120 ppb at 150 ℃. The CuO/ZnO sensor showed the maximum response to H2S compared with other interfering gases such as ethanol, methanol, and CO, indicating its high selectivity.