• Title/Summary/Keyword: Micro Powder

Search Result 473, Processing Time 0.027 seconds

Fiber Distribution Characteristics and Flexural Performance of Extruded ECC Panel (압출성형 ECC 패널의 섬유분포 특성과 휨 성능)

  • Lee, Bang-Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kwon, Young-Jin;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.573-580
    • /
    • 2009
  • This paper presents the mix composition, production method, and curing condition applied to the extruded ECC(Engineered Cementitious Composite) panel which are able to exhibit multiple cracking and potential pseudo strain-hardening behavior. In addition to the production technique of extruded ECC panel, the effect of fiber distribution characteristics, which are uniquely created by applying extrusion process, on the flexural behavior of the panel is also focussed. In order to demonstrate fiber distribution, a series of experiments and analyses, including image processing/analysis and micro-mechanical analysis, was performed. The optimum mix composition of extruded ECC panel was determined in terms of water matrix ratio, the amount of cement, ECC powder, and silica powder. It was found that flexural behavior of extruded ECC panel was highly affected by the slight difference in mix composition of ECC panel. This is mainly because the difference in mix composition results in the change of micro-mechanical properties as well as fiber distribution characteristics, represented by fiber dispersion and orientation. In terms of the average fiber orientation, the fiber distribution was found to be similar to the assumption of two dimensional random distribution, irrespective of mix composition. In contrast, the probability density function for fiber orientation was measured to be quite different depending on the mix composition.

Formation of Au Particles in Cu2-xICu2IIO3-δ (x ≈ 0.20; δ ≈ 0.10) Oxide Matrix by Sol-Gel Growth

  • Das, Bidhu Bhusan;Palanisamy, Kuppan;venugopal, Potu;Sandeep, Eesam;Kumar, Karrothu Varun
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • Formation of Au particles in nonstoichiometric $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxide from aniline + hydrochloric acid mixtures and chloroauric acid in the ratios 30 : 1; 60 : 1; 90 : 1 (S1-S3) by volume and 0.01 mol of copper acetate, $Cu(OCOCH_3)_2.H_2O$, in each case is performed by sol-gel growth. Powder x-ray diffraction (XRD) results show Au particles are dispersed in tetragonal nonstoichiometric dicopper (I) dicopper (II) oxides, $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$). Average crystallite sizes of Au particles determined using Scherrer equation are found to be in the approximate ranges ${\sim}85-140{\AA}$, ${\sim}85-150{\AA}$ and ${\sim}80-150{\AA}$ in S1-S3, respectively which indicate the formation of Au nano-micro size particles in $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Hysteresis behaviour at 300 K having low loop areas and magnetic susceptibility values ${\sim}5.835{\times}10^{-6}-9.889{\times}10^{-6}emu/gG$ in S1-S3 show weakly ferromagnetic nature of the samples. Broad and isotropic electron paramagnetic resonance (EPR) lineshapes of S1-S4 at 300, 77 and 8 K having $g_{iso}$-values ${\sim}2.053{\pm}0.008-2.304{\pm}0.008$ show rapid spin-lattice relaxation process in magnetic $Cu^{2+}$ ($3d^9$) sites as well as delocalized electrons in Au ($6s^1$) nano-micro size particles in the $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Broad and weak UV-Vis diffuse reflectance optical absorption band ~725 nm is assigned to $^2B_{1g}{\rightarrow}^2A_{1g}$ transitions, and the weak band ~470 nm is due to $^2B_{1g}{\rightarrow}^2E_g$ transitions from the ground state $^2B_{1g}$(${\mid}d_{x^2-y^2}$>) of $Cu^{2+}$ ($3d^9$) ions in octahedral coordination having tetragonal distortion.

Development of Yeast Leavened Pan Bread Using Commercial Doenjangs(Korean Soybean Paste): 2. Correlation between Factors Relating with Dough Extensibility and Bread Quality in Addition of Doenjang (시판 된장을 이용한 식빵 제조: 2. 된장 첨가에 따른 반죽 신장성 관련인자와 빵품질 특성과의 상관성 조사)

  • 오현주;김창순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.880-887
    • /
    • 2004
  • This study was carried out to examine the effect of added Doenjang on wheat flour dough and gluten rheological properties using Micro-extensigraph method and correlation between factors relating with Doenjang or dough rheology and bread Quality. There were big differences in pretense activity and free amino acid contents among seven commercial Doenjangs. The addition of Doenjang to wheat flour dough required increased mixing time for gluten development. Dry gluten content increased significantly with addition of less than 5.0% of Doenjang powder. As the amount of Doenjang powder increased, dough peak force decreased and extensibility increased up to a certain level an then decreased, producing the weak dough. This phenomena was seen more obviously in wet gluten than wheat flour dough. Especially, the Doeniang having high pretense activity and high cystein content, caused highly extensible weak dough resulting in bread with high loaf volume and tender texture at the levels of 2.5% added Doenjang. Increase of dry gluten content and extensibility of wheat flour dough or wet gluten positively correlated (r=0.76, 0.91, 0.93), with loaf volume and negatively with hardness values, respectively. Therefore, it was concluded that improvement of bread quality with Doenjang resulted from increase of gluten content and dough extensibility.

Effect of Powder Condition on the Fire and Explosion Characteristics of Suspended and Deposited Dusts (부유 및 퇴적의 분체 조건이 화재폭발 특성에 미치는 영향)

  • Han, Ou-Sup;Seo, Dong-Hyun;Choi, Yi-Rac;Lim, Jin-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.229-236
    • /
    • 2022
  • An experimental investigation was conducted on the influences of median size, dust concentration, dust condition (cloud and layer) for the fire and explosion hazard assessment of dusts with the same powder property. For this purpose, tests have been performed in accordance with 20 L explosion sphere, thermogravi- metric analyze, combustion rate tester (UN method). We investigated the explosion characteristics and flame propagation velocity (FPV) in dust cloud and the flame spread velocity(FSV) over dust layer on 8 dust samples with different particle sizes of 4 types of dusts (Sugar, Mg, Al, Zr). An explosion hazard increased with decreasing particle size in Mg and Al dust clouds, but sugar did not show the effect of explosion hazard due to particle size change in dust clouds. The flame propagation velocity (FPV) of suspended dusts increased significantly when the particle size decreased from micro to nano than the variation of particle size in micro range. The flame spread velocity (FSV) over dust layer showed a tendency to increase over the inclined dust layers (30° slope) rather than the horizontal dust layers (0° slope). The flame spread rate (FSV) over dust layers increased on the inclined dust layer (30° slope) rather than the horizontal dust layer (0° slope) and was higher upward flame than the downward flame in condition of inclined dust layers(30° slope).

Evaluation of the Exothermic Properties and Reproducibility of Concrete Containing Electro-conductive Materials (전기전도성 재료를 혼입한 콘크리트의 발열특성 및 재현성 평가)

  • Song, Dong-Geun;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.25-34
    • /
    • 2016
  • From 1990's, a study on the development of exothermic concrete, a concrete which electro-conductive material is mixed, has been proceeded. However, due to the difficulty of exothermic reproducibility of concrete specimen, the study has been unable to continuously carried out. Accordingly, this study was focused on developing an exothermic concrete for the purpose of snow-melting material. Cement paste and mortar specimens mixed with graphite, conductive metal powder and chemical admixture were made. The evaluation of exothermic performance and reproducibility was conducted under $-2^{\circ}C$ of low temperature. In addition, micro-chemical analysis was carried out to investigate a cause of exothermic reproducibility. As a test result, the specimen mixed with graphite and superplasticizer with air entrained showed the best exothermic performance and reproducibility. Through micro-chemical analysis, it is judged that polymer or methacrylic acid (MAA), the contents inside the superplasticizer with air entrained, gave exothermic reproducibility by generating the electrochemical reaction with graphite.

Micro Emulsion Synthesis of LaCoO3 Nanoparticles and their Electrochemical Catalytic Activity

  • Islam, Mobinul;Jeong, Min-Gi;Ghani, Faizan;Jung, Hun-Gi
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.121-130
    • /
    • 2015
  • The micro emulsion method has been successfully used for preparing perovskite LaCoO3 with uniform, fine-shaped nanoparticles showing high activity as electro catalysts in oxygen reduction reactions (ORRs). They are, therefore, promising candidates for the air-cathode in metal-air rechargeable batteries. Since the activity of a catalyst is highly dependent on its specific surface area, nanoparticles of the perovskite catalyst are desirable for catalyzing both oxygen reduction and evolution reactions. Herein, LaCoO3 powder was also prepared by sol-gel method for comparison, with a broad particle distribution and high agglomeration. The electro catalytic properties of LaCoO3 and LaCoO3-carbon Super P mixture layers toward the ORR were studied comparatively using the rotating disk electrode technique in 0.1 M KOH electrolyte to elucidate the effect of carbon Super P. Koutecky-Levich theory was applied to acquire the overall electron transfer number (n) during the ORR, calculated to be ~3.74 for the LaCoO3-Super P mixture, quite close to the theoretical value (4.0), and ~2.7 for carbon-free LaCoO3. A synergistic effect toward the ORR is observed when carbon is present in the LaCoO3 layer. Carbon is assumed to be more than an additive, enhancing the electronic conductivity of the oxide catalyst. It is suggested that ORRs, catalyzed by the LaCoO3-Super P mixture, are dominated by a 2+2-electron transfer pathway to form the final, hydroxyl ion product.

A study on Manufacture of EMI Composite Powder by the Electroless Ni Plating Method (무전해 니켈도금방법을 이용한 EMI 복합분말제조에 관한 연구)

  • Joung, I.;Yoon, S.R.;Han, S.N.;Na, J.H.;Kim, C.W.
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.444-449
    • /
    • 1998
  • There are various shielding materials that have been considered; the use of a metallic plate or the layering of a conductive material on a plastic surface and the insertion of filler in plastics. All of these methods have shown their merits and weakness. Therefore, many studies have concentrated on developing materials that effectively cut down EMI without increase in weights of housing materials. In these respects, this study has focused on investigations of the shielding effect of materials that have electroless nickel plating on the lamella structured micro particles surface with low specific gravity. When a film of electroless nickel were plated on a micro particle surfaces and then mixed with paint, the electromagnetic shielding effects were measured as 63dB. Although these effects were less than that 90dB of the copper plate, trials in a series of 6 times increased the shielding effect by IOdB and is applicable to wide range of EMI shielding.

  • PDF

Fabrication of High Strength Transparent Bulletproof Materials by Ion Exchanged Borosilicate Glass (보로실리케이트 유리의 이온교환에 의한 고강도 투명방탄소재의 제조)

  • Kim, Young-Hwan;Shim, Gyu-In;Lim, Jae-Min;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1121-1126
    • /
    • 2010
  • Borosilicate glass (81% $SiO_2$-2% $Al_2O_3$-13% $B_2O_3$-4% $Na_2O_3$) was prepared, and the glass was ion exchanged in $KNO_3$ powder containing different temperature and time. The $K^+-Na^+$ ion exchange takes place at the glass surface and creates compressed stress, which raise the mechanical strength of the glass. The depth profile of $Na^+$ and $K^+$ was observed by electron probe micro analyzer. With the increasing heat-treatment time from 0min to 20min, the depth profile was increased from 17.1um to 29.4um, but mechanical properties were decreased. It was also found out that excessive heat treatment brings stress relaxation. The Vickers hardness, Fracture Toughness and bending strength of ion exchanged samples at $570^{\circ}C$ for 10min were $821.8H_v$, $1.3404MPa{\cdot}m^{1/2}$, and 953MPa, which is about 120%, 180%, and 450% higher than parent borosilicate glass, respectively. Transmittance was analyzed by UV-VIS-NIR spectrophotometer. Transmittance of ion exchanged borosilicate glass was decreased slightly at visible-range. It can be expected that transparent bulletproof materials in more light-weight and thinner by ion exchanged borosilicate glass.

An Experimental Study on Strength Development of Micro Grinding Fly-ash Mortar - Effect of Alkali Activator and High Temperature Curing on the Compressive Strength of Concrete - (미분쇄한 플라이애시 모르타르의 강도증진 방안에 관한 연구 - 알칼리 자극제와 고온양생이 강도에 미치는 영향 -)

  • Cho, Hyun-Dae;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • Fly ash has the advantages, among others, of improving the characteristics of concrete, reducing the price of concrete products, improving the durability, and reducing hydration heat. However, when added in mass, it leads to problems such as insufficient concrete intensity, increase of AE use, and others, resulting in a limitation of the use volume. Therefore, this study is undertaken to solve the problems associated with themass use of fly ash through the high concentration powder ($4000{\sim}8000cm^2/g$) of fly ash, curing method, the addition of an alkali stimulation agent and others for the purpose of increasing the added value of the fly ash. The research showed that the intensity manifestation has an outstanding status, with the hydrates reaching a very stable condition if the rate of addition of a stimulation agent is appropriately used with the heightening of the fineness of the fly ash in the temperature range of $40^{\circ}C$, and if the applicable study is continued, it is likely to result ineffective value generation on the massive replacement of fly ash.

Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP) (Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성)

  • Yi, Eunjeong;Hwang, Haejin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.