• Title/Summary/Keyword: Micro Powder

Search Result 473, Processing Time 0.024 seconds

Fabrication of W-Cu Composite by Resistance Sintering under Ultrahigh Pressure

  • Kwon, Y.S.;Kim, J.S.;Zhou, Z.J.
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.181-185
    • /
    • 2003
  • Resistance sintering under ultra-high pressure if developed to fabricate W-Cu composite containing 5 to 80v/o copper. The consolidation was carried out under pressure of 6 to 8 GPa and input power of 18 to 23 kW for 50 seconds. The densification effect and microstructure of these W-Cu composites are investigated. The effect of W particle size on ,sintering density was also studied. The micro hardness was measured to evaluate the sintering effect.

Manufacture and Application of Diamond Orifices in Abrasive Suspension Jet for Micro Machining (습식 워터 젯 정밀 절삭 가공용 다이아몬드 오리피스 제조 및 응용)

  • Kim, Youn-Chul;Park, Hee-Dong;Jho, Jae-Han;Kang, Suk-Joong L
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.509-513
    • /
    • 2008
  • High-pressure abrasive entrained jet have rapidly become important machining technology over the last two decades. However, suspension jet by high-pressure has been recently developed for packaging sawing. Ideally, diamond materials should be used for components in abrasive water-jet systems that are subject to high erosive conditions. Using the diamond orifices improve maintenance and extend wear part life. This paper gives insights to using an abrasive suspension jet with diamond orifice. The influences of orifice material and orifice design are evaluated.

Preparation and Characterization of Monosized Germanium Particles by Pulsated Orifice Ejection Method

  • Masuda, Satoshi;Takagi, Kenta;Dong, Wei;Kawasaki, Akira
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.433-434
    • /
    • 2006
  • Monosized germanium micro particles are prepared by a newly developed Pulsated Orifice Ejection Method. The obtained particles are categorized into two kinds of the microstructures as refined and coarse ones. The morphological difference is estimated to be determined by the undercooling level during nucleation. Actually, the increase in the temperature of the melt was effective in coarsening the microstructure, because the temperature of the melt intensely relates to the undercooling level. The transition temperature of coarse and refined microstructures is found to be 1300-1350K. Furthermore, a triggered nucleation could improve the crystallinity of the particles in the short separation.

  • PDF

Binder-free Tungsten Carbide Fabricated by Pulsed Electric Current Sintering

  • Shimojima, K.;Hosokawa, H.;Nakajima, T.;Mizukami, M.;Yamamoto, Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.621-622
    • /
    • 2006
  • In this paper, we show some experimental results of binder-free WC sintered by Pulsed Electric Current Sintering (PECS) also known as Field Assisted Sintering Technology (FAST). These binder-free WC have extremely hardness and stiffness. However, these mechanical properties are dependent on the sintering condition, e.g., maximum temperature, applied pressure, etc. We show some relationship between mechanical properties and sintering condition to improve to sinter the binder-free WC.

  • PDF

The effect of Sc on the properties of Al-Si alloy Powders fabricated by Gas Atomization and Their extruded bars (Sc첨가가 가스분무법 으로 제조된 Al-Si합금 분말 및 압출재의 특성에 미치는 효과)

  • Lee, Woo-Ram;Kim, Ji-Hoon;Goo, Ja-Myoung;Kim, Jun-Ro;Lee, Tae-Haeng;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.455-458
    • /
    • 2009
  • In this research, the effect of Sc on the micro structure and mechanical properties of Al-20Si alloy powders and their extruded bar was investigated. The Al-20wt%Si and Al-20wt%Si-0.6wr%Sc powders were produced by gas atomization. The micro structures of the alloy powders and extrude was examined by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The alloy powders were subsequently canned, degassed and extruded in order to produce the alloy bulk. It was found that the micro structure of the Al-20Si alloy powder was refined and the mechanical properties was significantly improved by the addition of 0.6Sc.

  • PDF

The Prediction of Time-Dependent Thermal Conductivity of Polyurethane Foam with Cell Gas Analysis (셀 가스분석을 이용한 우레탄폼의 열전도도 장기변화 예측)

  • Lee, Hyo-Jin;Chun, Jong-Han;Kim, Jin-Seon;Lee, Jin-Bok;Kang, Nam-Goo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1367-1372
    • /
    • 2009
  • A proprietary device is adopted to break out the membrane of cell in the rigid polyurethane foam. As it is known, the membrane of cell is hardly tearing-off thoroughly in a mechanical way due to both its elastic characteristic and micro sized pores. In this study, a novel experimental approach is introduced to burst out all gases inside the cells of the rigid polyurethane foam by abrasively grinding micro-cells completely into fine powder. The biggest advantage of this approach is to be capable of releasing all gases out from the cell even in the micro pores. As clearly reflected from the repeatability, the accuracy of the result is highly improved and high confidence in the data sets as well. For the measurements of not only gas composition but partial pressure for each gas simultaneously as well, a precision gas mass spectrometer is used in-line directly to the abrasive grinding device. To control the starting point of the polyurethane foam, all samples were prepared on site in the laboratory. Manufactured time is one of the most critical factors in characterization of cell gas composition because it is known that one of gas composition, especially, carbon dioxide, is diffused out dramatically in a short period of time as soon as it is foamed.

  • PDF

Properties of Blocking Layer with Ag Nano Powder in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.105-109
    • /
    • 2016
  • We prepared a working electrode (WE) with a blocking layer (BL) containing 0 ~ 0.5 wt% Ag nano powders to improve the energy conversion efficiency (ECE) of dye sensitized solar cell (DSSC). FESEM and micro-Raman were used to characterize the microstructure and phase. UV-VIS-NIR spectroscopy was employed to determine the adsorption of the WE with Ag nano powders. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with Ag nano powders. From the results of the microstructural analysis, we confirmed that Ag nano powders with particle size of less than 150 nm were dispersed uniformly on the BL. Based on the phase and adsorption analysis, we identified the existence of Ag and found that the adsorption increased when the amount of Ag increased. The photovoltaic results show that the ECE became 4.80% with 0.3 wt%-Ag addition compared to 4.31% without Ag addition. This improvement was due to the increase of the localized surface plasmon resonance (LSPR) of the BL resulting from the addition of Ag. Our results imply that we might be able to improve the efficiency of a DSSC by proper addition of Ag nano powder to the BL.

Effect of Hot Isostatic Pressing on the Microstructure and Properties of Kinetic Sprayed Nb Coating Material (Kinetic Spray 공정으로 제조된 Nb 코팅 소재의 미세조직 및 물성에 미치는 열간 등압 성형(HIP)의 영향)

  • Lee, Ji-Hye;Yang, Sangsun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Niobium is one of the most important and rarest metals, and is used in the electronic and energy industries. However, it's extremely high melting point and oxygen affinity limits the manufacture of Nb coating materials. Here, a Nb coating material is manufactured using a kinetic spray process followed by hot isotactic pressing to improve its properties. OM (optical microscope), XRD (X-ray diffraction), SEM (scanning electron microscopy), and Vickers hardness and EPMA (electron probe micro analyzer) tests are employed to investigate the macroscopic properties of the manufactured Nb materials. The powder used to manufacture the material has angular-shaped particles with an average particle size of $23.8{\mu}m$. The porosity and hardness of the manufactured Nb material are 0.18% and 221 Hv, respectively. Additional HIP is applied to the manufactured Nb material for 4 h under an Ar atmosphere after which the porosity decreases to 0.08% and the hardness increases to 253 Hv. Phase analysis after the HIP shows the presence of only pure Nb. The study also discusses the possibility of using the manufactured Nb material as a sputtering target.

A Study of Mechanical Properties and Microstructure of ZrO2-Ag Depending on the Composite Route (ZrO2-Ag의 복합화 공정에 따른 기계적 특성 및 미세조직 평가)

  • Yeo, In-Chul;Han, Jae-Kil;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.416-423
    • /
    • 2012
  • This paper introduces an effect of a preparing $ZrO_2$-Ag composite on its mechanical properties and microstructure. In present study, $ZrO_2$-Ag was prepared by reduction-deposition route and wetting dispersive milling method, respectively. Two type of Ag powders (nano Ag and micron Ag size, respectively) were dispersed into $ZrO_2$ powder during wetting dispersive milling in D.I. water. Each sample was sintered at $1450^{\circ}C$ for 2hr in atmosphere, and then several mechanical tests and analysis of microstructure were carried out by bending test, hardness, fracture toughness and fracture surface microstructure. As for microstructure, the Ag coated $ZrO_2$ showed homogeneously dispersed Ag in $ZrO_2$ in where pore defect did not appear. However, $ZrO_2$-nano Ag and $ZrO_2$-micro Ag composite appeared Ag aggregation and its pore defect, which carried out low mechanical property and wide error function value.

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties (고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가)

  • Ahn, Dong-Hyun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.