• Title/Summary/Keyword: Micro Lattice

Search Result 96, Processing Time 0.026 seconds

Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles

  • Zeferino, Raul Sanchez;Pal, Umapada;Reues, Ma Eunice De Anda;Rosas, Efrain Rubio
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • Well-crystalline $SnO_2$ nanoparticles of 4-5 nm size with different In contents were synthesized by hydrothermal process at relatively low temperature and characterized by transmission electron microscopy (TEM), microRaman spectroscopy and photoluminescence (PL) spectroscopy. Indium incorporation in $SnO_2$ lattice is seen to cause a lattice expansion, increasing the average size of the nanoparticles. The fundamental phonon vibration modes of $SnO_2$ lattice suffer a broadening, and surface modes associated to particle size shift gradually with the increase of In content. Incorporation of In drastically enhances the PL emission of $SnO_2$ nanoparticles associated to deep electronic defect levels. Although In incorporation reduces the band gap energy of $SnO_2$ crystallites only marginally, it affects drastically their dye degradation behaviors under UV illumination. While the UV degradation of methylene blue (MB) by undoped $SnO_2$ nanoparticles occurs through the production of intermediate byproducts such as azure A, azure B, and azure C, direct mineralization of MB takes place for In-doped $SnO_2$ nanoparticles.

Crystal Growth of $Ca_3(Li,Nb,Ga)_5O_{12}$ Garnet Crystals

  • Yu, Young-Moon;Chani, Valery-I.;Shimamura, Kiyoshi;Fukuda, Tsuguo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.351-374
    • /
    • 1996
  • Various types of garnet compounds were synthsized by iso-and aliovalent substitutions and sintering method. Among them, fiber shapes of garnet crystals were grown from the $Ca_3Li_xNb_{(1.5+x)}Ga_{(3.5-2x)}O_{12}$ melt where x = 0 ~ 0.5 by modified micro-pulling down method in air using Pt crucibles. The measured lattice constants as a function of solidification fraction of grown fiber crystals are about $12.54\;{\AA}$ irrespective of x. It was found that the $Ca_3Li_{0.275}Nb_{1.775}Ga_{2.95}O_{12}$ garnet melts congruently at about $1450\;^{\circ}C$ based on the purities of garnet phase and variations of lattice parameter. Transparent and bubble-free crystals of x = 0.25 and 0.275 were grown by Czochralski techniques in air using Pt crucibles. An absorption spectrum is also reported.

  • PDF

Unstable Interface Phenomena in a Micro Channel

  • Inamuro T.;Kobayashi K.;Yamaoka Y.;Ogino F.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.118-120
    • /
    • 2003
  • The behavior of viscous fingerings caused by an external force is investigated by using a two­phase lattice Boltzmann method. The effects of the modified capillary number, the viscosity contrast, and the modified Darcy-Rayleigh number on the instability of interfaces are found. The calculated wave numbers are in good agreement with the theoretical ones in the range of wave numbers smaller than 10, but the calculated ones tend to become smaller than the theoretical ones in higher wave numbers.

  • PDF

Synthesis of Magnesite by Hydrothermal Method (마그네사이트(MgCO$_3$)의 수열합성에 관한 연구)

  • 오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.3
    • /
    • pp.14-18
    • /
    • 1974
  • Magnesite single crystals up to 250 microns were synthesized from an equi-molar solution of MgCl2 and Na2CO3 in the micro-autoclave at 180-20$0^{\circ}C$. The lattice constant of synthetic magnesite was obtained a=4.6369(7), c=15.0230(10)A.U. by a least squares analysis based on the UNICS Program (Sakurai 1967) was applied to 28 reflections. Results of X-ray powder diffraction and of DTA, TGA, IRA, and EPMA studies indicate that synthesized magnesite has properties to those of natural magnesite.

  • PDF

Elastic Property Extraction System of Polycrystalline Thin-Films for Micro-Electro-Mechanical System Device and Its Applications (MEMS 부품을 위한 다결정 박막의 탄성 물성치 추출 시스템과 적용)

  • Jung Hyang Nam;Choi Jae Hwan;Chung Hee Taeg;Lee June Key
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.170-174
    • /
    • 2005
  • A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, effects of kinetics parameters on the extraction of effective elastic properties of polycrystalline thin-films are studied by using statistical method. Effects of the fraction of the potential site($f_p$) among the parameters for deposition process of microstructure on the extraction of effective elastic properties of polycrystalline thin-films are investigated. For this research, polysilicon is applied to this system as the polycrystalline thin-films.

Synthesis of GaN micro-scale powder and its characteristics (GaN 미세 분말의 합성과 특성)

  • 조성룡;여용운;이종원;박인용;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.554-557
    • /
    • 2001
  • In this work, we had synthesis the GaN powder by direct reaction between Ga and NH$_3$at the temperature range of 1000∼1150$^{\circ}C$, and investigated the reaction condition dependence of the GaN yield and some properties of GaN powder. The synthesized powder had Platelet and prismatic shape and showed hexagonal crystalline structure with the lattice constants of a= 3.1895 ${\AA}$, c= 5.18394 ${\AA}$, and the ratio of c/a = 1.6253. The GaN powder synthesis processes were examined based on the oxidation process of mater, and found as combined with mass transport process for the initial stage and diffusion-limited reaction for the extended reaction.

  • PDF

Numerical Study for Mixing Characteristics of an Oscillating Micro-stirrer (미소진동교반기의 혼합특성에 대한 수치적 연구)

  • Kim, Yong-Dae;Maeng, Joo-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.309-312
    • /
    • 2006
  • Effective mixing is an important problem in microfluidics for chemical and biomechanical applications. In this study, the influences of the Reynolds number and the oscillating frequency on mixing characteristics of micro-stirrer are studied in a microchannel with single stirrer. The influence of fluid inertial effects in an active mixer is first discussed. It is found that the stirring effects by stirrer oscillation are promptly attenuated at low Reynolds number, which makes greatly difficult the rapid mixing. As the inertial effects are increased, the chaotic advection is generated and then developed. The mixing phase is finally developed some mushroom shaped structure. And the mixing efficiency is also studied as a function of the oscillating frequency. We found that the mixing efficiency does not always increase with higher oscillating frequency of stirrer. Consequently, we found the functional relation between the optimal frequency of a stirrer and the Reynolds number.

  • PDF

The effect of particle size on hydrogen storage of Mm-based alloys (Mn계 합금의 수소 저장에 대한 입자크기의 영향)

  • Park, Chan Kyo;Bae, Jang Soon;Cho, Bum Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.4
    • /
    • pp.171-177
    • /
    • 2000
  • Metal hydride used as hydrogen storage material usually needs the activating process to store the hydrogen at high temperature or high pressure. In general as the particle size of metal hydride becomes smaller, approached to the micro, furthermore, nano scale, storage ability and reaction kinetics are reported to be increased, because the specific surface is extremely increased. But the experimental results demonstrated that the optimum particle size is existed for the best absorbing performance, opposite to the usual expectation. This results from the particles to be come amorphous with their approaching to micro and nano scale, in the storage site within the metal hydride lattice is decreased, which is proved by XRD and SEM.

  • PDF

Shape Optimization of an Active Micro-Mixer for Improving Mixing Efficiency (혼합 효율 향상을 위한 마이크로 동적 믹서의 형상최적화)

  • Park, Jae-Yong;Kim, Sang-Rak;Lee, Won-Gu;Yoo, Jin-Sik;Kim, Young-Dae;Maeng, Joo-Seung;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.146-152
    • /
    • 2007
  • An active micro-mixer, which was composed of an oscillating micro-stirrer in the microchannel to provide rapid, effective mixing at high flow, rates was analyzed. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight microchannel and microchannel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an optimum design for a dynamic micro-mixer with an oscillating stirrer was performed using Taguchi method in order to obtain a robust solution. The design parameters were established as the frequency, the length and the angle of the stirrer and the optimal values were determined to be 2, 0.8D and ${\pm}75^{\circ}$, respectively. It was found that the mixing index of the optimal design increased 80.72% compared with that of the original design.

THRUST GENERATION AND PROPULSIVE EFFICIENCY OF A BIOMIMETIC FOIL MOVING IN A LOW REYNOLDS NUMBER FLOW (저 레이놀즈 수에서 이동하는 생체모사익의 추력 생성 및 추진효율)

  • An, Sang-Joon;Choi, Jong-Hyeok;Maeng, Joo-Sung;Han, Cheol-Heui
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, the fluid dynamic forces and performances of a moving airfoil in the low Reynolds number flow is addressed. In order to simulate the necessary propulsive force for the moving airfoil in a low Reynolds number flow, a lattice-Boltzmann method is used. The critical Reynolds and Strouhal numbers for the thrust generation are investigated for the four propulsion types. It was found that the Normal P&D type produces the largest thrust with the highest efficiency among the investigated types. The leading edge of the airfoil has an effect of deciding the force production types, whereas the trailing edge of the airfoil plays an important role in augmenting or reducing the instability produced by the leading edge oscillation. It is believed that present results can be used to decide the optimal propulsion types for the given Reynolds number flow.