• 제목/요약/키워드: Micro Hole Drilling

Search Result 69, Processing Time 0.029 seconds

A Study on the Development and the Monitoring of Micro Hole Drilling Machine (미소경 드릴링 머신의 시작과 감시에 관한 연구)

  • 백인환;정우섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.62-68
    • /
    • 1994
  • Recently, the trends toward reduction in size and weight of industrial products increased the application of micro hole for manufacturing gadgets of high precision and gave rise to a great deal of interest for micro hole drilling M/C. Quite a few research work is performed on micro drilling on domestic basis compared with the tendency of analyzing cutting mechanism, adaptive control, monitoring of generally available drills of diameter greater than 1mm. This study adresses the design, manufacturing and controlling a micro hole drilling M/C with the overload detection instrument and the step feed mechanism. Controlling and monitoring of the drilling process are acomplished on PC basis for more user interfaces and effectiveness. The test machine of the results of this research shows a good foundation for extending further micro hole machining technique.

  • PDF

Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement (미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어)

  • 정만실;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF

A Study on the characteristic of micro deep hole drilling (마이크로 Deep hole 가공 특성에 관한 연구)

  • 김동우;조명우;이응숙;강재훈;민승기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1064-1067
    • /
    • 2001
  • Micro drilling is used in the production of fuel injection nozzle, watch, camera, air bearing and pinted circuit boards(PCB) are demanded for high precision. Recently industries of precision production require more small hole, high aspect ratio and high speed working for micro deep hole drilling. But the undesirable characteristics of micro drilling is the small signal to noise ratios, wandering motion of drill, high aspect ratio and the increase of cutting force as cutting depth increase. So in this paper to obtain the optimization of cutting condition a study on the characteristics of micro deep hole drilling used Tool dynamometer is proposed.

  • PDF

Cutting force regulation of microdrilling using the sliding mode control (슬라이딩 모드 제어를 이용한 마으크로 드릴의 절삭력 제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.842-846
    • /
    • 1997
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratios larger than 10) is gaining increased attention in a wide spectrum of precision production industries. Alternative methods such as EDM, laser drilling, etc. can sometimes replace mechanical micro-hole drilling but are not acceptable in PCB manufacture because they yield inferior hole quality and accuracy. The major difficulties in micro-hold drilling are related to wandering motions during the inlet stage, high aspect ratios, high temperature,etc. However, of all the difficulties, the most undesirable one is the increase of drilling force as the drill penetrates deeper into hold. This is caused mainly by chip related effects. Peck-drilling is thus widely used for deep hole drilling despite the fact that it leads to low productivity. Therefore, in this paper, a method of cutting force regulation is proposed to achieve continuous drilling. A proportional plus derivative (PD) and a sliding modecontrol algorithm will be implemented for controlling the spinle rotational frequeency. Experimental results will show that sliding mode control reduces the nominal cutting force and its variation better than the PD control, resulting in a number of advantages such as an increase in drill life, fast stabilization of the wandering motion, and precise positioning of the hole.

  • PDF

A Study on the Thermal Behavior during Micro Hole Drilling (마이크로 구멍 가공 중의 열적 현상에 관한 연구)

  • 류승호;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.79.1-84
    • /
    • 1995
  • The thermal analysis method containing micro drilling characteristic is proposed for the first time. There are such problems in thermal analysis of micro hole drilling as the thermal modeling complexity of drilling process and the undesirable micro drilling characteristic. Especially, the undesirable micro drilling characteristic prevents our using conventional thermal modeling. To model the thermal behavior of the micro drilling process, the finite different method, where heat source vectors are distributed by the measured rhrust and torque, is proposed. This method agrees with thermal behavior of the real system. And, it enable to predict the temperature field near the drill during. The validity of this method is verified in comparing with experimental results.

  • PDF

A Study on Cutting Conditions of the Be-Cu Material in Micro Deep Hole Drilling Operation (미세심공드릴 가공에 있어서 Be-Cu 재료의 절삭조건에 관한 연구)

  • 김희남;유숙철;이형원;이원영;이종화;이인수
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.2
    • /
    • pp.117-126
    • /
    • 2000
  • Recently micro deep hole drilling is required in the whole industry. However, micro deep hole drilling has still much difficulty because of the lack of drill rigidity and the interruption of chip. We treated a micro deep hole(diameter 0.35mm, depth 3mm) used in a connector jack pin. Therefore, a surface roughness is very important. In this paper, we studied on the variation of the surface roughness for cutting conditions during micro deep hole drilling of Be-Cu material. Most of all, we tried to drill on CNC for the realization of automatization.

  • PDF

Development of Micro-hole Drilling Machine and Assessment of cutting Performance (마이크로흘 드릴링 머신의 개발 및 절삭성능 평가)

  • 김민건;유병호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.39-44
    • /
    • 2001
  • In this paper, drill fred mechanism, cutting depth measuring device and sensing buzzer of drill contact were investigated in order to develop the micro-hole drilling machine. Also, measuring device of cutting resistance was developed in order to estimate cutting resistance from change of cutting condition. The results show that extremely-low fled rate(less then $17{\mu}m/S$${\mu}{\textrm}{m}$ /s) can be done and cutting depth can be measured by up to 1${\mu}{\textrm}{m}$ with developed drilling machine. Accordingly we could assemble a very cheap micro-hole drilling machine($\phi$ 0.05~0.5 mm). Also we got the some properties of cutting performance i.e. under the same condition, cutting torque decreases as increase of spindle speed and rapid fled of drill brings about the inferior cutting state under low spindle speed.

  • PDF

A Study on the Characteristics of Micro Deep Hole Machining in Micro Drilling Machine (마이크로 드릴링 M/C에 의한 미세구멍가공특성에 관한 연구)

  • 민승기;이동주;이응숙;강재훈;김동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.275-280
    • /
    • 2001
  • Recently, the trends of industrial products grow more miniaturization, variety and mass production. Micro drilling which take high precision in cutting work is requested more micro hole and high speed working. Especially, Micro deep hole drilling is becoming more important in a wide spectrum of precision production industries, ranging from the production of automotive fuel injection nozzle, watch and camera parts, medical needles, and thick multi-layered Printed Circuit Boards(PCB) that are demanded for very high density electric circuitry. This paper shows the tool monitoring results of micro drill with tool dynamometer. And additionally, microscope with built-in monitor inspection show the relationship between burr in workpiece and chip form of micro drill machining.

  • PDF

A Study on the Micro Hole Machining Characteristics in WEDG method (방전 미세구멍가공 특성의 고찰)

  • 정태현;박규율
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.953-956
    • /
    • 1997
  • Micro drilling characteristics by EDM method was investigated. In detail, Micro tool electrode for EDM drilling was machined by use of WEDG method and micro hole was drilled using the machined tool electrode in SUS plate. The machining accuracy and time was compared in a different dielectric fluid. As a result, it was convinced that this method could be utilized as a fabrication technology of micro mold or micro 3 dimensional parts.

  • PDF

Localized Electro-chemical Micro Drilling Using Ultra Short Pulses (초단펄스 전해 국부화를 이용한 미세구멍 가공)

  • 안세현;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.213-220
    • /
    • 2003
  • By the localization of electro-chemical dissolution region, we succeeded in a few micrometer size hole drilling on stainless steel with the radial machining gap of about 1 ${\mu}{\textrm}{m}$. Tens of nanosecond duration voltage pulses were applied between WC micro-shaft and stainless steel in the 0.1 M $H_2SO_4$ solution. Pt balance electrode was used to drill the high aspect ratio micro-hole without generation of Cr oxide layer on the machined surface. The effects of applied voltage, pulse duration, and pulse period on localization distance were investigated according to machining time. We suggested the taper reduction technique especially brought up on blind-hole machining. High quality micro-holes with 8 ${\mu}m$ diameter with 20 ${\mu}m$ depth and 12 ${\mu}m$ diameter with 100 ${\mu}m$ depth were drilled on 304 stainless steel foil. The various hole shapes were also produced including stepped holes and taper free holes.