• Title/Summary/Keyword: Micro Fabrication Technology

Search Result 563, Processing Time 0.019 seconds

The study on Comparison Evaluation of Shear Bond Strength of Co-Cr Based Alloy using for Porcelain Fused Metal (도재용착주조관용 Co-Cr계 비귀금속 합금의 전단결합강도 비교평가에 관한 연구)

  • Kim, Hee-Jin;Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.32 no.3
    • /
    • pp.195-207
    • /
    • 2010
  • Purpose: The purpose of this study was to observe the microstructural changes of surface in the specimens, performing the shear bond strength testing. The currently most used non-precious alloys are nickel-chromium based alloys with or without beryllium. However, their biocompatibility has been questioned concerning possible damages to the health of the patient and professionals involved in the fabrication of prosthesis caused by long exposure to Ni and Be. An option to nickel-chromium alloys is the cobalt-chromium alloy, an alternative that does not sacrifice the physical properties of the metal porcelain systems. Studies in the animals substantially show that the cobalt-chromium alloys are relatively well tolerated, being therefore more biocompatible than the nickel-chromium alloys. Methods: Non-addition Be to nickel-chromium based alloy(Bellabond plus) and cobalt-chromium alloy which has been widely used(Wirobond C) fused with ZEO light porcelain classified control group and cobalt-chromium alloy which is developing alloy of Alphadent company in Korea(Alphadent alloy) fused with ZEO light porcelain classified experimental group. The specimens of $4mm{\times}4mm{\times}0.5mm$ were prepared as-cast and as-opaque to cast body to analyze the mechanical characteristic change, the microstructure of alloy surface. The phase change was used to observe through XRD analysis and OM/SEM was used to observe the surface of specimens as-cast and as-opaque to cast body. Chemical formation of their elements was measured with EDS. Then hardness was measured with Micro Vicker's hardness tester. Shear bond strength test thirty specimens of $10mm{\times}10mm{\times}2mm$ was prepared, veneered, 3mm high and 3mm in diameter, over the alloy specimens. The shear bond strength test was performed in a universal testing machine(UTM) with a cross head speed of 0.5mm/min. Ultimate shear bond strength data were analyzed with one-way ANOVA and the Scheffe's test (P<0.05). Within the limits of this study, the following conclusions were drawn: The X-ray diffraction analysis results for the as-cast and as-opaque specimens showed that the major relative intensity of Bellabond plus alloy were changed smaller than Wirobond C and Alphadent Co-Cr based alloys. Results: Microstructural analysis results for the opaque specimens showed all the alloys increased carbides and precipitation(PPT). Alphadent Co-Cr based alloy showed the carbides of lamellar type. The Vickers hardness results for the opaque specimens showed Wirobond C and Alphadent Co-Cr based alloys were increaser than before ascast, but Bellabond plus alloy relatively decreased. The mean shear bond strengths (MPa) were: 33.11 for Wirobond C/ZEO light; 25.00 for Alphadent Co-Cr alloy/ZEO light; 18.02 for Bellabond plus/ZEO light. Conclusion: The mean shear bond strengths for Co-Cr and Ni-Cr based alloy were significantly different. But the all groups showed metal-metal oxide modes in shear bond strengths test at the interface.

Fabrication and loss measurement of $P_2O_5-SiO_2$ optical waveguides on Si (Si을 기판으로한 $P_2O_5-SiO_2$ 광도파로의 제작 및 손실측정)

  • 이형종;임기건;정창섭;정환재;김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.258-265
    • /
    • 1992
  • A low loss optical waveguide of $P_{2}O_{5}-SiO_{2}$on Si substrate is produced by using the chemical vapour deposition method of $SiO_2$ thin films used in Si technology. Propagation loss of the waveguide layer was 1.65 dB/cm as produced and reduced down to 0.1 dB/cm after heat treatment at $1100^{\circ}C$. By using laser lithography and reactive ion etching method $P_{2}O_{5}-SiO_{2}$ waveguide was produced and subsequently annealed at $1100^{\circ}C$.As a result of this annealing the shape of the waveguide core was changed from rectangular to semi-circular form, and the propagation loss was reduced as down to 0.03 dB/cm at 0.6328$\mu$m and 0.04dB/cm at 1.53$\mu$m. We think that the mechanism of the reduction in propagation loss during the heat treatment is the following: 1) The hydrogen bonding in waveguide layer, which causes absorption loss, is dissociated and diffused out. 2) The roughness of the interface and the micro-structure of the waveguide layer is removed. 3) The irregularities in the cross-sectional shape of the waveguide which was induced during the lithographic process were disappeared by flowing of the waveguide core.

  • PDF

Fabrication and characteristics of modified PZT System doped With $La_2O_3$ ($La_2O_3$가 첨가된 modified PZT계의 제조 및 특성)

  • 황학인;박준식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.418-427
    • /
    • 1997
  • The effect of $La_2O_3$ as a dopant on the microstructure structure, crystal structure and electrical properties was studied. $0.05Pb(Sn_{0.5}Sb_{0.5})O_3+0.11PbTiO_3+0.84PbZroO_3+0.4Wt%MnO_2$ (=0.05PSS +0.11PT+0.84PZ+0.4wt%$MnO_2$) systems doped with 0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 mole% $La_2O_3$ were fabricated and investigated sintering density, crystal structure and micro-structure. The sintered 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system doped with $La_2O_3$showed sintering density of the range of 7.683 g/㎤ of 0 mole% doping to 7.815 g/㎤ of 0 mole% doping. The average grain sizes in the range of 0 to 5 mole% $La_2O_3$were decreased from 9.0 $\mu\textrm{m}$ to 1.3 $\mu\textrm{m}$. X-ray diffraction investigation of sintered bodies showed that solid solutions were formed between 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system and $La_2O_3$ in the range of 0 to 1 mole% but second phases were formed in case of 3, 5 mole%. Dielectric constants at 1 kHz were increased with 0 to 3 mlole% $La_2O_3$ before and after poling at the condition of 5 $KV_{DC}$/mm at $120^{\circ}C$ or $140^{\circ}C$ during 20 minutes. All Dielectric losses at 1 kHz were less than 1%, Curie temperatures were $208^{\circ}C$, $183^{\circ}C$, $152^{\circ}C$ and $127^{\circ}C$ at 0, 0.5, 1, 3 mole% $La_2O_3$ respectively. The values of $K_p$ were increased from 0 to 3 mole% $La_2O_3$ after poling at condition of 5 $KV_{DC}$mm at the condition of $120^{\circ}C$ or $140^{\circ}C$. The case of 0.7 mole% $La_2O_3$doped 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system showed $K_p$ of 14.5% by poling at $140^{\circ}C$ during 20 minutes.

  • PDF