• Title/Summary/Keyword: Micro Etching

Search Result 425, Processing Time 0.028 seconds

A Study on the Fabrication Method of Mold for 7 inch LCD-BLU by continuous microlens 200μm (연속마이크로렌즈 200μm 적용 7인치 LCD-BLU 금형개발)

  • Kim, J.S.;Ko, Y.B.;Min, I.K.;Yu, J.W.;Heo, Y.M.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.42-47
    • /
    • 2007
  • LCD-BLU is one of kernel parts of LCD and it consists of several optical sheets: LGP, light source and mold frame. The LGP of LCD-BLU is usually manufactured by etching process and forming numerous dots with $50\sim300{\mu}m$ diameter on the surface. But the surface of the etched dots of LGP is very rough due to the characteristics of the etching process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched dot patterned LGP, optical pattern with continuous microlens was designed using optical simulation CAE. Also, a mold with continuous micro-lens was fabricated by UV-LiGA reflow process and applied to 7 inch size of navigator LCD-BLU in the present study.

Structure & Mechanical Behavior of TiCN Thin Films by rf Plasma Deposition (RF Plasma법으로 증착된 TiCN박막의 구조 및 기계적 거동에 관한 연구)

  • Baeg, C.H.;Park, S.Y.;Hong, J.W.;Wey, M.Y.;Kang, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.91-97
    • /
    • 2000
  • The structure and mechanical properties of TiN and TiCN thin films deposited on STD61 steel substrates by the RF-sputtering methods has been studied by using XPS, XRD, micro-hardness tester, scratch tester, and wear-resistance tester. XPS results showed that the TiCN thin film formed with chemical bonding state. The TiN thin films grew with (111) orientation having the lowest strain energy by compressive stress, whereas the TiCN thin films grew with both (111) and (200) orientation, but (200) orientation having the lowest surface energy becomes dominant as carbon contents increase. The pre-etching treatment of substrate did not affect on the preferred orientation of thin films, but it played an important role in improving mechanical properties of thin films such as the hardness, adhesion and wear- resistance. Especially, the TiCN thin films showed the superior wear resistances due to high hardness and low friction coefficient compared with TiN thin films.

  • PDF

QMF Ion Beam System Development for Oxide Etching Mechanism Study (산화막 식각 기구 연구를 위한 QMF Ion Beam 장치의 제작)

  • 주정훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.4
    • /
    • pp.220-225
    • /
    • 2004
  • A new ion beam extraction system is designed using a simple ion mass filter and a micro mass balance and a QMS based detecting system. A quadrupole Mass Filter is used for selective ion beam formation from inductively coupled high density plasma sources with appropriate electrostatic lens and final analyzing QMS. Also a quartz crystal microbalance is set between a QMF and a QMS to measure the etching and polymerization rate of the mass selected ion beam. An inductively coupled plasma was used as a ion/radical source which had an electron temperature of 4-8 eV and electron density of $4${\times}$10^{11}$#/㎤. A computer interfaced system through 12bit AD-DA board can control the pass ion mass of the qmf by setting RF/DC voltage ratio applied to the quadrupoles so that time modulation of pass ion's mass is possible. So the direct measurements of ion - surface chemistry can be possible in a resolution of $1\AA$/sec based on the qcm's sensitivity. A full set of driving software and hardware setting is successfully carried out to get fundamental plasma information of the ICP source and analysed $Ar^{+}$ beam was detected at the $2^{nd}$ QMS.

Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications

  • Bang, Byoung-Man;Kim, Hyun-Jung;Park, Soo-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • We report a simple route for synthesizing multi-dimensional structured silicon anode materials from commercially available bulk silicon powders via metal-assisted chemical etching process. In the first step, silver catalyst was deposited onto the surface of bulk silicon via a galvanic displacement reaction. Next, the silver-decorated silicon particles were chemically etched in a mixture of hydrofluoric acid and hydrogen peroxide to make multi-dimensional silicon consisting of one-dimensional silicon nanowires and micro-scale silicon cores. As-synthesized silicon particles were coated with a carbon via thermal decomposition of acetylene gas. The carbon-coated multi-dimensional silicon anodes exhibited excellent electrochemical properties, including a high specific capacity (1800 mAh/g), a stable cycling retention (cycling retention of 89% after 20 cycles), and a high rate capability (71% at 3 C rate, compared to 0.1 C rate). This process is a simple and mass-productive (yield of 40-50%), thus opens up an effective route to make a high-performance silicon anode materials for lithiumion batteries.

Non-polar and Semi-polar InGaN LED Growth on Sapphire Substrate

  • Nam, Ok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.51-51
    • /
    • 2010
  • Group III-nitride semiconductors have been widely studied as the materials for growth of light emitting devices. Currently, GaN devices are predominantly grown in the (0001) c-plane orientation. However, in case of using polar substrate, an important physical problem of nitride semiconductors with the wurtzite crystal structure is their spontaneous electrical polarization. An alternative method of reducing polarization effects is to grow on non-polar planes or semi-polar planes. However, non-polar and semipolar GaN grown onto r-plane and m-plane sapphire, respectively, basically have numerous defects density compared with c-plane GaN. The purpose of our work is to reduce these defects in non-polar and semi-polar GaN and to fabricate high efficiency LED on non/semi-polar substrate. Non-polar and semi-polar GaN layers were grown onto patterned sapphire substrates (PSS) and nano-porous GaN/sapphire substrates, respectively. Using PSS with the hemispherical patterns, we could achieve high luminous intensity. In case of semi-polar GaN, photo-enhanced electrochemical etching (PEC) was applied to make porous GaN substrates, and semi-polar GaN was grown onto nano-porous substrates. Our results showed the improvement of device characteristics as well as micro-structural and optical properties of non-polar and semi-polar GaN. Patterning and nano-porous etching technologies will be promising for the fabrication of high efficiency non-polar and semi-polar InGaN LED on sapphire substrate.

  • PDF

Micromachinng and Fabrication of Thin Filmes for MEMS-infrarad Detectors

  • Hoang, Geun-Chang;Yom, Snag-Seop;Park, Heung-Woo;Park, Yun-Kwon;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jong-Hoon;Moonkyo Chung;Suh, Sang-Hee
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In order to fabricate uncooled IR sensors for pyroelectric applications, multilayered thin films of Pt/PbTiO$_3$/Pt/Ti/Si$_3$N$_4$/SiO$_2$/Si and thermally isolating membrane structures of square-shaped/cantilevers-shaped microstructures were prepared. Cavity was also fabricated via direct silicon wafer bonding and etching technique. Metallic Pt layer was deposited by ion beam sputtering while PbTiO$_3$ thin films were prepared by sol-gel technique. Micromachining technology was used to fabricate microstructured-membrane detectors. In order to avoid a difficulty of etching active layers, silicon-nitride membrane structure was fabricated through the direct bonding and etching of the silicon wafer. Although multilayered thin film deposition and device fabrications were processed independently, these could b integrated to make IR micro-sensor devices.

  • PDF

Fabrication of Viewing Angle Direction Brightness-Enhancement Optical Films using Surface Textured Silicon Wafers

  • Jang, Wongun;Shim, Hamong;Lee, Dong-Kil;Park, Youngsik;Shin, Seong-Seon;Park, Jong-Rak;Lee, Ki Ho;Kim, Insun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.569-573
    • /
    • 2014
  • We demonstrate a low-cost, superbly efficient way of etching for the nano-, and micro-sized pyramid patterns on (100)-oriented Si wafer surfaces for use as a patterned master. We show a way of producing functional optical films for the viewing angle direction brightness-enhancement of Lambertian LED (light emitting diode)/OLED (organic light emitting diode) planar lighting applications. An optimally formulated KOH (Potassium hydroxide) wet etching process enabled random-positioned, and random size-distributed (within a certain size range) pyramid patterns to be developed over the entire (100) silicon wafer substrates up to 8" and a simple replication process of master patterns onto the PC (poly-carbonate) and PMMA (poly-methyl methacrylate) films were performed. Haze ratio values were measured for several film samples exhibiting excellent values over 90% suitable for LED/OLED lighting purposes. Brightness was also improved by 13~14% toward the viewing angle direction. Computational simulations using LightTools$^{TM}$ were also carried out and turned out to be in strong agreement with experimental data. Finally, we could check the feasibility of fabricating low-cost, large area, high performance optical films for commercialization.

THE EFFECT OF HYBRID LAYER THICKNESS ON MICROTENSILE BOND STRENGTH OF THREE-STEP AND SELF-ETCHING DENTIN ADHESIVE SYSTEMS (혼성층의 두께가 three-step과 self-etching 상아질 접착제의 미세인장결합강도에 미치는 효과)

  • Lee, Hye-Jung;Park, Jeong-Kil;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.491-497
    • /
    • 2003
  • The purpose of this study was to evaluate the correlation between hybrid layer thickness and bond strength using confocal laser scanning microscope and microtensile bond strength test of two adhesive systems. The dentin surface of human molars. sectioned to remove the enamel from the occlusal surface. Either Scotchbond Multi-Purpose(3M Dental Product, St. Paul, MN, U.S.A) or Clearfil SE Bond (Kuraray, Osaka, Japan) was bonded to the surface. and covered with resin-composite. The resin-bonded teeth were serially sliced perpendicular to the adhesive interface to measure the hybrid layer thickness by confocal laser scanning microscope. The specimen were trimmed to give a bonded cross-sectional surface area of $1\textrm{mm}^2$, then the micro-tensile bone test was performed at a cross head speed of 1.0 mm/min. All fractured surfaces were also observed by stereomicroscope. There was no significant differences in bond strengths the materials(p>0.05). However. the hybrid layers of three-step dentin adhesive system, SM, had significantly thicker than self-etching adhesive system. CS(p<0.05). Pearson's correlation coefficient showed no correlation between hybrid layer thickness and bond strengths(p>0.05). Bond strengths of dentin adhesive systems were not dependent on the thickness of hybrid layer.

Laser micromachining of high-aspect-ratio metallic channels for the application to microthermal devices (마이크로 열소자 제작을 위한 고세장비 금속채널의 레이저 가공)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.437-446
    • /
    • 2006
  • A fabrication method fur high-aspect-ratio microchannels in stainless steel using laser-assisted thermochemical wet etching is reported in this paper. The fabrication of deep microchannels with an aspect ratio over ten is realized by applying a multiple etching process with an optimization of process conditions. The cross-sectional profile of the microchannels can be adjusted between rectangular and triangular shapes by properly controlling laser power and etchant concentration. Excellent dimensional uniformity is achieved among the channels with little heat-affected area. Microchannels with a width ranging from 15 to $50{\mu}m$ can be fabricated with an aspect ratio of ten and a pitch of 150 m or smaller. The effects of process variables such as laser power, scan speed, and etchant concentration on the fabrication results, including etch width, depth, and cross-sectional profile are closely examined.

A Study on the Radius of Curvature of Concave Optical Fiber Tips fabricated by Laser-Induced Photothermal Effect (레이저 유도 광열 효과를 이용하여 제작된 오목한 광섬유 팁의 곡률 반경에 관한 연구)

  • Choi, Ji-Won;Son, Gyeong-Ho;Yu, Kyoung-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.871-876
    • /
    • 2019
  • We fabricated concave optical fiber tips using hydrofluoric acid solution and photothermal effect induced by $1.55{\mu}m$ wavelength laser applied to an optical fiber. The radius of curvature of the concave optical fiber tips fabricated with different applied laser power, etching time, and concentration of hydrofluoric acid was measured with an optical microscope. Then, we analyzed how the radius of curvature changes for those three variables. In addition, the reliability of the measurement method using a microscope was verified through a free spectral range(FSR) and a scanning electron microscope(SEM). Through this paper, the radius of curvature can be adjusted by the variables of the fabrication process of concave optical fiber tips; thus, it is overcoming the limitations of conventional optical fiber etching methods using hydrofluoric acid solutions.