• 제목/요약/키워드: Micro Etching

검색결과 427건 처리시간 0.027초

Polymer Wafer bonding of MEMS device and Cap Wafer with deep cavity (Deep cavity를 가진 Cap Wafer와 MEMS 소자의 Polymer Wafer bonding)

  • Lee, Hyun-Kee;Park, Tae-Joon;Yoon, Sang-Kee;Park, Nam-Su;Park, Hyung-Jae;Min, Jong-Hwan;Lee, Yeong-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1702-1703
    • /
    • 2011
  • MEMS 소자의 Wafer level Package 관련하여 Deep cavity를 가진 Cap Wafer와 Polymer bonding 중 cavity 단차로 인한 Polymer Patterning 및 접합 불량의 어려움을 극복할 수 있는 새로운 공정 flow를 제안하였다. Cavity를 형성할 때 사용하는 Si deep etching Mask인 기존의 Photoresist를 접합용 감광성 Polymer로 대체하고, cavity 형성 후, 별도의 추가 공정 없이 이 Polymer를 이용해 Wafer bonding을 진행하였다. 이를 통해 cavity 단차에 따른 문제를 해결함과 동시에 공정이 단순하고 제작 비용이 저렴하며, 신뢰성 있는 Wafer level Package를 구현하였다.

  • PDF

A Study on the Effect of Optical Characteristics in 2 inch LCD-BLU by Aspect Ratio of Optical Pattern: II. Mold and Optical Characteristics (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 광학패턴 세장비의 영향 연구 : II. 금형 및 광특성)

  • Kim, J.S.;Ko, Y.B.;Yu, J.W.;Min, I.K.;Hwang, C.J.;Yoon, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.95-98
    • /
    • 2006
  • LCD-BLU (Back Light Unit) is one of kernel parts of LCD unit. The fabrication method of a 3-D micro mold patterned with micro-lenses for the LGP (Light Guiding Plate), one of the most important parts of LCD-BLU, was presented. Instead of dot pattern made by etching, 3-D optical pattern design with $50{\mu}m$ micro-lens was applied in the present study. The micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP. The positive micro-lens patterned injection mold with different aspect ratios (i.e. 0.3 and 0.4) was fabricated with modified LiGA with thermal reflow process. The brightness of LCD-BLU increased as aspect ratio of micro-lens increased.

  • PDF

Design and Fabrication of Micro Combustor (III) - Fabrication of Micro Engine by Photosensitive Class - (미세 연소기 개발 (III) - 감광 유리를 이용한 마이크로 엔진의 제작 -)

  • Lee, Dae-Hoon;Park, Dae-Eun;Yoon, Joon-Bo;Yoon, Eui-Sik;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제26권12호
    • /
    • pp.1639-1645
    • /
    • 2002
  • Micro engine that includes Micro scale combustor is fabricated. Design target was focused on the observation of combustion driven actuation in MEMS scale. Combustor design parameters are somewhat less than the size recommended by feasibility test. The engine structure is fabricated by isotropic etching of the photosensitive glass wafers. Electrode formed by electroplating of the Nickel. Photosensitive glass can be etched isotropically with almost vertical angle. Bonding and assembly of structured photosensitive glass wafer form the engine. Combustor size was determined to be 1 mm scale. Movable piston is engraved inside the wafer. Ignition was done by nickel spark plug which was electroplated with thickness of 40 ${\mu}{\textrm}{m}$. The wafers were bonded by epoxy that resists high temperature. In firing test due to the bonding method and design tolerance pressure buildup by reaction was not confirmed. But ignition, flame propagation and actuation of micro structure from the reaction was observed. From the result basement of design and fabrication technology was obtained.

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface (알루미늄의 발수 표면처리 기술 개발)

  • Byun, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Kuk;Kim, Yang-Do;Kim, Do-Geun
    • Journal of Surface Science and Engineering
    • /
    • 제45권4호
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

Fabrication of the accelerometer using the nano-gap trench etching (나노갭 트렌치 공정을 이용한 가속도센서 제작)

  • Kim, Hyeon-Cheol;Kwon, Hee-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • 제9권2호
    • /
    • pp.155-161
    • /
    • 2016
  • This paper proposes a novel fabrication method for a capacitive type micro-accelerometer with uniform nano-gap using photo-assisted electro-chemical etching. The sensitivity of the accelerometer should be improved while the electrodes between the inertial mass and the sensing comb should be narrowed. In this paper the nano-gap trench structure is fabricated using the photo-assisted electrochemical etching method. The sensor was designed and analysed using ANSYS simulator. The characteristics of the etching were observed according to the dc bias, the light intensity, the composition of the solution, the temperature of the solution, and the pattern pitch variation. The optimum etching conditions were dc bias of 2V, Blue LED of 20mA, 49wt% HF:DMF:D.I.Water=1:20:10, the pattern pitch of $20{\mu}m$. Uniform trench structure with width of 344nm and depth of $11.627{\mu}m$ are formed using the optimum condition.

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF

Tooth surface treatment strategies for adhesive cementation

  • Rohr, Nadja;Fischer, Jens
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권2호
    • /
    • pp.85-92
    • /
    • 2017
  • PURPOSE. The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS. Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one self-adhesive cement (Panavia SA plus) were included in this study. The interface of the cement and the tooth surface with the different pre-treatments was analyzed using SEM. pH values of the cements and primers were measured. RESULTS. The highest bond strength values for all cements were achieved with etching and primer on enamel ($25.6{\pm}5.3-32.3{\pm}10.4MPa$). On dentin, etching and priming produced the highest bond strength values for all cements ($8.6{\pm}2.9-11.7{\pm}3.5MPa$) except for Panavia V5, which achieved significantly higher bond strengths when pre-treated with primer only ($15.3{\pm}4.1MPa$). Shear bond strength values were correlated with the micro-retentive surface topography of enamel and the tag length on dentin except for Panavia V5, which revealed the highest bond strength with primer application only without etching, resulting in short but sturdy tags. CONCLUSION. The highest bond strength can be achieved for Panavia F 2.0, Permaflo DC, and Panavia SA plus when the tooth substrate is previously etched and the respective primer is applied. The new cement Panavia V5 displayed low technique-sensitivity and attained significantly higher adhesion of all tested cements to dentin when only primer was applied.

A Study on ILD(Interlayer Dielectric) Planarization of Wafer by DHF (DHF를 적용한 웨이퍼의 층간 절연막 평탄화에 관한 연구)

  • Kim, Do-Youne;Kim, Hyoung-Jae;Jeong, Hae-Do;Lee, Eun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제19권5호
    • /
    • pp.149-158
    • /
    • 2002
  • Recently, the minimum line width shows a tendency to decrease and the multi-level increases in semiconductor. Therefore, a planarization technique is needed and chemical mechanical polishing(CMP) is considered as one of the most suitable process. CMP accomplishes a high polishing performance and a global planarization of high quality. However there are several defects in CMF, such as micro-scratches, abrasive contaminations and non-uniformity of polished wafer edges. Wet etching process including spin-etching can eliminate the defects of CMP. It uses abrasive-free chemical solution instead of slurry. On this study, ILD(Interlayer-Dielectric) was removed by CMP and wet etching process using DHF(Diluted HF) in order to investigate the possibility of planrization by wet etching mechanism. In the thin film wafer, the results were evaluated from the viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU). And the pattern step heights were also compared for the purpose of planarity characterization of the patterned wafer. Moreover, Chemical polishing process which is the wet etching process with mechanical energy was introduced and evaluated for examining the characteristics of planarization.

Ordered Macropores Prepared in p-Type Silicon (P-형 실리콘에 형성된 정렬된 매크로 공극)

  • Kim, Jae-Hyun;Kim, Gang-Phil;Ryu, Hong-Keun;Suh, Hong-Suk;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.241-241
    • /
    • 2008
  • Macrofore formation in silicon and other semiconductors using electrochemical etching processes has been, in the last years, a subject of great attention of both theory and practice. Its first reason of concern is new areas of macropore silicone applications arising from microelectromechanical systems processing (MEMS), membrane techniques, solar cells, sensors, photonic crystals, and new technologies like a silicon-on-nothing (SON) technology. Its formation mechanism with a rich variety of controllable microstructures and their many potential applications have been studied extensively recently. Porous silicon is formed by anodic etching of crystalline silicon in hydrofluoric acid. During the etching process holes are required to enable the dissolution of the silicon anode. For p-type silicon, holes are the majority charge carriers, therefore porous silicon can be formed under the action of a positive bias on the silicon anode. For n-type silicon, holes to dissolve silicon is supplied by illuminating n-type silicon with above-band-gap light which allows sufficient generation of holes. To make a desired three-dimensional nano- or micro-structures, pre-structuring the masked surface in KOH solution to form a periodic array of etch pits before electrochemical etching. Due to enhanced electric field, the holes are efficiently collected at the pore tips for etching. The depletion of holes in the space charge region prevents silicon dissolution at the sidewalls, enabling anisotropic etching for the trenches. This is correct theoretical explanation for n-type Si etching. However, there are a few experimental repors in p-type silicon, while a number of theoretical models have been worked out to explain experimental dependence observed. To perform ordered macrofore formaion for p-type silicon, various kinds of mask patterns to make initial KOH etch pits were used. In order to understand the roles played by the kinds of etching solution in the formation of pillar arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, N-dimethylformamide (DMF), iso-propanol, and mixtures of HF with water on the macrofore structure formation on monocrystalline p-type silicon with a resistivity varying between 10 ~ 0.01 $\Omega$ cm. The etching solution including the iso-propanol produced a best three dimensional pillar structures. The experimental results are discussed on the base of Lehmann's comprehensive model based on SCR width.

  • PDF

Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect (초발수 현상을 이용한 나노 잉크 미세배선 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Rha, Jong Joo;Cho, Chul-Jin
    • Journal of Powder Materials
    • /
    • 제20권2호
    • /
    • pp.120-124
    • /
    • 2013
  • This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.