• Title/Summary/Keyword: Micro Engine

Search Result 179, Processing Time 0.035 seconds

Experimental Study of the Micro Gas Turbine Engine Performance Test (마이크로 가스터빈 엔진 성능실험 연구)

  • Kim, Seungjae;Choi, Seongman;Rhee, Dongho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.587-590
    • /
    • 2017
  • Performance test was conducted by micro gas turbine engine. A small test rig was established for the performance measurement of the micro gas turbine engine. The performance was conducted by the Olympus HP engine. Engine inlet mass flow rate, static thrust, fuel consumption rate, air and gas temperature at the inlet of major components were measured. In the test results, we could well understand about the micro gas turbine engine performance characteristics.

  • PDF

An Optimization Technique for Diesel Engine Combustion Using a Micro Genetic Algorithm (유전알고리즘을 이용한 디젤엔진의 연소최적화 기법에 대한 연구)

  • 김동광;조남효;차순창;조순호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • Optimization of engine desist and operation parameters using a genetic algorithm was demonstrated for direct injection diesel engine combustion. A micro genetic algorithm and a modified KIVA-3V code were used for the analysis and optimization of the engine combustion. At each generation of the optimization step the micro genetic algorithm generated five groups of parameter sets, and the five cases of KIVA-3V analysis were to be performed either in series or in parallel. The micro genetic algorithm code was also parallelized by using MPI programming, and a multi-CPU parallel supercomputer was used to speed up the optimization process by four times. An example case for a fixed engine speed was performed with six parameters of intake swirl ratio, compression ratio, fuel injection included angle, injector hole number, SOI, and injection duration. A simultaneous optimization technique for the whole range of engine speeds would be suggested for further studies.

Optimization of Heavy-Duty Diesel Engine Operating Parameters Using Micro-Genetic Algorithms (유전알고리즘을 이용한 대형 디젤 엔진 운전 조건 최적화)

  • Kim, Man-Shik;Liechty, Mike P.;Reitz, Rolf D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • In this paper, optimized operating parameters were found using multi-dimensional engine simulation software (KIVA-3V) and micro-genetic algorithm for heavy duty diesel engine. The engine operating condition considered was at 1,737 rev/min and 57 % load. Engine simulation model was validated using an engine equipped with a high pressure electronic unit injector (HEUI) system. Three important parameters were used for the optimization - boost pressure, EGR rate and start of injection timing. Numerical optimization identified HCCI-like combustion characteristics showing significant improvements for the soot and $NO_X$ emissions. The optimized soot and $NO_X$ emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively. Moreover, the optimum results met EPA 2007 mandates at the operating point considered.

Design and Fabrication of Micro Combustor (III) - Fabrication of Micro Engine by Photosensitive Class - (미세 연소기 개발 (III) - 감광 유리를 이용한 마이크로 엔진의 제작 -)

  • Lee, Dae-Hoon;Park, Dae-Eun;Yoon, Joon-Bo;Yoon, Eui-Sik;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1639-1645
    • /
    • 2002
  • Micro engine that includes Micro scale combustor is fabricated. Design target was focused on the observation of combustion driven actuation in MEMS scale. Combustor design parameters are somewhat less than the size recommended by feasibility test. The engine structure is fabricated by isotropic etching of the photosensitive glass wafers. Electrode formed by electroplating of the Nickel. Photosensitive glass can be etched isotropically with almost vertical angle. Bonding and assembly of structured photosensitive glass wafer form the engine. Combustor size was determined to be 1 mm scale. Movable piston is engraved inside the wafer. Ignition was done by nickel spark plug which was electroplated with thickness of 40 ${\mu}{\textrm}{m}$. The wafers were bonded by epoxy that resists high temperature. In firing test due to the bonding method and design tolerance pressure buildup by reaction was not confirmed. But ignition, flame propagation and actuation of micro structure from the reaction was observed. From the result basement of design and fabrication technology was obtained.

A study on Windmilling Start Performance of Micro Turbo-jet Engine (초소형 엔진의 윈드밀링 시동 성능 해석)

  • Kim, Wan-Jo;Park, Hwi-Seob;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.319-322
    • /
    • 2007
  • A numerical method for prediction of the Windmilling start performance of micro-turbojet engine has been developed. The method incorporates the available loss correlations and analyses for the estimation of the performance of the major engine components. It has been applied to the micro turbojet engine with the mixed type compressor. The starting performance characteristics on the on/off-design regions have been analysed. Additionally, the sensitivity of each design parameter which has an effect on Windmilling start performance has been analysed.

  • PDF

Full Rig Test and High Altitude Ignition Test of Micro Turbojet Engine Combustor (초소형 터보제트엔진 연소기의 리그시험 및 고고도 점화시험)

  • Lee, Dong-Hun;Kim, Hyung-Mo;Park, Poo-Min;You, Gyung-Won;Paeng, Ki-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.373-376
    • /
    • 2009
  • A full rig combustor test and altitude ignition test were carried out for radial-annular combustor of micro turbojet engine. 11.2% total pressure loss and 99.85% of combustion efficiency were measured at design point of engine under sea level standard condition and $2{\sim}6$ of air excess ratio for ignition envelope was achieved on engine starting regime. Finally, A 30,000 ft high altitude ignition test was also performed and finally we found out that the developed radial-annular combustor is appropriate to micro turbojet engine.

  • PDF

Performance test of a micro-turbine jet engine (초소형 가스터빈 엔진 성능시험)

  • Shin, Young-Gy;Kim, Jong-Moon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.788-793
    • /
    • 2001
  • Test experience with a micro-turbine jet engine is introduced. The engine provides us with valuable opportunities to experience know-hows essential for engine development. It consists of a single radial compressor and a single stage turbine. Engine starting procedure has been established after many trials and errors. Static and dynamic engine performance tests were conducted. Static performance was found to be inferior to that advertised by the manufacturer. Further improvement is needed. Dynamic performance revealed that engine thrust overshoots unfavorably for the purpose of UAV control.

  • PDF

Development of a Low Power Micro-Ion Engine Using Microwave Discharge

  • Koizumi, Hiroyuki;Kuninaka, Hitoshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.842-848
    • /
    • 2008
  • In this study, we propose a novel micro-ion engine system. Single plasma source is used for both ion beam source and neutralizing electron source. By changing the electrical connection, either operation can be switched. This micro-ion engine system gives translation motion and attitude control to microspacecraft. The major objective of this study is verification of our concept. Small plasma source of 20 mm diameter was developed. Plasma was sustained by microwave power. Using this plasma source, ion beam extraction and electron emission was successively demonstrated.

  • PDF

Fabrication and feasibility estimation of Micro Engine Component (미세 엔진 운용성 검증 및 요소 기술 개발)

  • Lee, Dae-Hoon;Park, Dae-Eun;Choi, Kwon-Hyoung;Yoon, Joon-Bo;Kwon, Se-Jin;Yoon, Eui-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.31-36
    • /
    • 2001
  • As a part of micro engine development feasibility estimation was done through fabrication and test of down scaled combustor and MEMS fabricated spark electrode. In an experimental observation of the down scaled combustion phenomena where flame propagation was observed by optical method and pressure change in combustor which gives the information about the reaction generated thermal energy was recorded and analyzed. Optimal combustor scale was derived to be about 2mm considering increased heat loss effect and thermal energy generation capability. Through the fabrication and discharge test of MEMS electrode effects of electrode width and gap was investigated. Electrode was fabricated by thick PR mold and electroplating. From the result discharge voltage characteristic in sub millimeter scale electrode having thickness of $40{\mu}m$ was obtained. From the result base technology for design and fabrication of micro engine was obtained.

  • PDF

Development of a 50kW Micro Gas Turbine Engine (50kW 마이크로 가스터빈 개발)

  • Kim, Sooyong;Park, MooRyong;Choi, Bumseok;Ahn, Kookyoung;Choi, SangKyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.314-319
    • /
    • 2002
  • Performance analysis and test of a 50kW micro gas turbine is carried out. The present study was initiated in 1996 by KIMM researchers to develope a 50kW class turbogenerator gas turbine engine for hybrid vehicle propulsion system. but with its low emission and compactness, it seemed that it can also be applied as a source of distributed power generation. In this study, general description of the KIMM's efforts to acquire performance test skills of the self-made 50kW micro gas turbine engine. At present, non-load performance test up to 615000 rpm was accomplished and is expected to make through 80,000 rpm by the end of year. Several revisions in design and manufacture were made during the course of experiments. The resulting outputs is thought to be valuable for the further refinement of the system for eventual commercialization of the product.

  • PDF