• 제목/요약/키워드: Micro End-Milling

검색결과 47건 처리시간 0.023초

마이크로 앤드밀링에 의한 미소 부품 가공기술 연구 (A Study on the Micro Parts Manufacturing Technology by Micro End-milling)

  • 제태진;이종찬;최환;이응숙
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.167-172
    • /
    • 2003
  • The machining method by using end-milling tool has been applying in machining structures of various shapes because of the availability. Recently, all kinds of industries based on the parts of micro shape are developing, and the demands of mechanical micro machining technology are Increasing suddenly to produce these parts. According to such changes, the technology of the micro end-milling machining is applying as one of the most important machining means. This research is to aim at developing machining technology for various micro structures using micro end-mill. This paper introduces micro mechanical machining system with ultra precision, and demonstrates methods manufacturing all sorts of parts and moldings for industry and examples of applicable machining by using micro end-milling tool of micro sizes from hundreds to tens in diameter.

  • PDF

미세형상 가공을 위한 Micro Slot 가공에서의 공구변형에 의한 가공오차 보상 (Machining Error Compensation for Tool Deflection in Micro Slot-Cutting Processes for Fabrication of Micro Shapes)

  • 손종인;윤길상;서태일
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.121-127
    • /
    • 2008
  • Micro end-milling has been becoming an important machining process to manufacture a number of small products such as micro-devices, bio-chips, micro-patterns and so on. Despite the importance of micro end-milling, many related researches have given grand efforts to micro end-milling phenomenon, for example, micro end-milling mechanism, cutting force modeling and machinability. This paper strongly concerned actual problem, micro tool deflection, which causes excessive machining errors on the workpiece. To solve this problem, machining error prediction method was proposed through a series of test micro cutting and analysis of their SEM images. An iterative algorithm was applied in order to obtain corrected tool path which allows reducing machining errors in spite of tool deflection. Experiments are carried out to validate the proposed approaches. In result, remarkable error reduction could be obtained.

유한요소법을 이용한 마이크로 평엔드밀링에서의 공구변형 예측 (Tool Deflection Estimation in Micro Flat End-milling Using Finite Element Method)

  • 임정수;조희주;서태일
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.498-503
    • /
    • 2010
  • The main purpose of this study strongly concerned micro machining error estimation by using FEM analysis of tool deflection shapes in micro flat end-milling process. For the precision micro flat end-milling process, analysis of micro cutting errors is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Especially, in micro end-milling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. Methods which deal with compensation of cutting error by tool deflection in macro end-milling process have been studied plentifully but, few researches transact with micro scaled cutting tool deflection in micro cutting process. Therefore, the trend of micro tool deflection was estimated by using FEM analysis in this paper. Cutting forces were acquired by micro dynamometer and these were utilized in FEM analysis. In order to verify FEM analysis results, micro machining processes were carried out and real machined profiles were compared with FEM results. Finally through the proposed approach well suited FEM results were obtained.

마이크로 엔드밀링시 공구 변형이 가공오차에 미치는 영향에 관한 연구 (A Study of Machining Error Due to Tool Deflection in Micro Endmilling)

  • 서태일;손종인;이학용
    • 한국생산제조학회지
    • /
    • 제18권3호
    • /
    • pp.294-299
    • /
    • 2009
  • Micro end-milling has been becoming an important machining process to manufacture a number of small products such as micro-devices, bio-chips, micro-patterns and so on. Many related researches have given grand effects to micro end-milling phenomenon, for example, micro end-milling mechanism, cutting force modeling and machinability. This paper strongly concerned actual problem, micro tool deflection, which causes excessive machining errors on the workpiece. Machining error were predicted and measured through a series of test micro cutting and analysis of their SEM images and FEM analysis. Experiments are carried out to validate the approaches.

  • PDF

플랫 엔드밀을 이용한 미세 홈 가공에 관한 연구 (A Study on Micro-grooves Cutting Using Flat-end Mill)

  • 이재일;이채문;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.209-214
    • /
    • 2002
  • Mechanical micro-engineering is an easy and cheap way to fabricate micro-structures. If the application of the conventional machining method using flat-end mill becomes available for the micro-manufacturing process, it will be advanced as an extension of the conventional machining process. In this study, micro-grooves cutting using flat-end mill(($\phi$8) was performed. The characteristics on flat-end milling was investigated to improve machinability of micro-grooves. The experiments were performed according to variations of spindle revolution, depth of cut, and feed rate. Machinability through various cutting conditions was evaluated by surface geometry, tool wear, and cutting force. The results show that micro V-grooves of width(pitch) 29${\mu}{\textrm}{m}$ were acquired by flat-end milling. The maximum and minimum roughness of the wall of grooves was 438 and 67nm, respectively

  • PDF

진동 마이크로 밀링을 이용한 미세 반복 패턴 가공 기술 연구 (Machining of Repetitive Micro Patterns using Oscillation Micro Milling)

  • 노승국;김경호;박종권
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.381-387
    • /
    • 2014
  • This paper introduces a system to machine micro-sized patterns effectively on surface based on micro-milling process using tools with simultaneous rotation and oscillation, oscillation micro milling. To review the effectiveness of proposed concept, we integrated a micro-spindle supported by active magnetic bearings with a precision 3-axis air bearing stage using double-wedge mechanism, and tested this oscillation milling. Two types of oscillation milling were tested, which are linear oscillation milling with a flat end mill and elliptical oscillation milling with a ball end mill with 0.3 mm of diameter. The spindle was rotating 110 krpm and workpiece was moving constant speed of 2~8 mm/sec during the oscillation milling. As the results, multiple oval shape dimples were generated in regular spacing, and the variation of elliptical motion made different shapes of patterns. The results showed that proposed oscillation milling can be successfully used for machining repeated micro-patterns.

Cusp 패턴 조정과 미소 볼엔드 밀링을 이용한 3차원 자유곡면의 다듬질 (Finishing of Scupltured Surface through Cusp Pattern Control and Micro-ball End Milling)

  • 심층건;양민양
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.177-183
    • /
    • 1994
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-from surfaces. However, cusps(or scallops) remaining at the machined part along the cutter paths require anothe finish process such as polishing or grinding. In this study, a high sped micro ball-end milling method has been suggested for the finish of free- form surfaces. A new tool path which makes the geometrical roughness of workpiece be constant through the machined surface has been developed. In the high speed machining of micro ball-end muling experimets, the developed tool paths have been successfully applied. And it was concluded that the surface roughness from this finish cuts of micro ball-end milling process was acceptable.

  • PDF

미세 폴 구조물 가공을 위한 마이크로 앤드밀링 기술 (Micro End-milling Technology for Micro Pole Structures)

  • 제태진;최두선;이응숙;홍성민;이종찬;최환
    • 한국기계가공학회지
    • /
    • 제4권4호
    • /
    • pp.7-13
    • /
    • 2005
  • In the case of fabricating micro pole structures such as column, square-pole and gear shaft by the micro end-milling process, it can be useful in the fields of industry, for example, micro parts, electrode for electrical discharge machining and micro mold for injection molding. In this study, machining factors and the process were analyzed. Machining experiments of various micro pole configurations were performed. Analysis of the change and effect of the cutting force according to the machining conditions was carried out. An analytical study of the deformation of the micro pole caused cutting conditions and cutting force through the finite element method and ANSYS program was carried out. As a result, this research presented a method of fabricating the column pole of below $100{\mu}m$ diameter with high aspect ratio by using micro end-milling process, and based on that, a method of fabricating a variety of applicable structures. Also the minimum size of the pole capable of fabricating through theory and experiment were demonstrated.

  • PDF

초소형 밀링머신을 이용한 미세절삭 가공 (A Study on the Micro Machining Using Micro Machine)

  • 배영호;고태조;김희술;정병묵;김재건
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1203-1206
    • /
    • 2003
  • After the micro turning lathe was developed in the last year by AMR Laboratory, a micro-milling machine is developed for micro machining. This machine is integrated with PZT-driven micro-sliders, micro-linear encoders, air turbine spindle which has maximum 150.000 rpm. It is applicable to milling and drilling machining. This paper shows the possibility of micro machining and characteristics of micro end milling process by using micro machine. A machining of micro barrier ribs using 0.2 mm flat type end mill was achieved by micro-milling machine. As experimental results show the machining capability and positional accuracy of this machine is good enough for machining micro parts.

  • PDF