• Title/Summary/Keyword: Micro Cutting

Search Result 379, Processing Time 0.03 seconds

Micro Machining Characteristics of V-shaped Single Crystal Diamond Tool with Ductile Workpiece (V형 다이아몬드공구에 의한 연질소재의 미세절삭특성 연구)

  • Hong, Sung-Min;Je, Tae-Jin;Lee, Dong-Ju;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.28-33
    • /
    • 2005
  • Recently, trends of TFT-LCD toward larger scale and thinner thickness continue. so, demands of Light Guide Panel (LGP) which is to substitute for prism sheet are appeared. Functions of LGP obtaining polarization of light of the prism sheet as well as the incidence and reflection of light are demanded. This prism type LGP to complete functions of the existing LGP and polarization at once must be supported by micro machining technology of LGP surface. In this research, the machining characteristics of the various materials were analysed by shaping using V-shaped single crystal diamond tool. The characteristics are machined surface, machining force due to the variation of cutting depth. Used specimens are engineering materials, which are 6:4 brass, oxygen-free copper, Al6061, PC, PMMA. The FFT analysis of the measured cutting force was conducted. The cutting characteristics were analyzed and the optimum cutting conditions with materials were established.

  • PDF

A Study On Prediction Model of Cutting Conditions for Draft Angle Control (마이크로금형 구배각 제어를 위한 절삭가공조건 예측모델에 관한 연구)

  • Cho, Ji-Hyun;Song, Byeong-Uk;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.387-393
    • /
    • 2012
  • It is very difficult to determine suitable cutting conditions in order to obtain accurate cutting profiles because machining errors caused by tool deflection depend upon cutting conditions. In this study the relationship between real cutting profiles (inclined shapes and machining errors) and cutting conditions was modeled in order to fabricate draft angle on micro molds. CCD (Central Composite Design) of DOE (Design Of Experiment) and RSM (Response Surface Method) were applied in order to model the relationship between cutting conditions and machining errors. In order to use CCD the range of radial depth of cut was chosen by $10-90{\mu}m$ and the range of feedrate was chosen by 200-300mm/min, and 9 points of cutting conditions were chosen inside determined ranges. Then, actual cutting processes were carried out as respect to 9 points of cutting conditions, draft angles and real cutting profiles were measured on cutting profiles, each response surface function was determined by conducting response surface analysis and the functions were represented by 3-dimensional graphs, contour lines and $101{\times}101$ matrices. Consequently it is possible to determine suitable cutting conditions in order to obtain arbitrary given draft angles and cutting profiles by using modeling. To validate proposed approach in this study suitable cutting conditions were determined by modeling in order to obtain arbitrary given draft angle and cutting profile, and actual cutting processes were carried out. About 95% of good agreement between predicted and measured values was obtained.

Selective Removal of Mask by Mechanical Cutting for Micro-patterning of Silicon (마스크에 대한 기계적 가공을 이용한 단결정 실리콘의 미세 패턴 가공)

  • Jin, Won-Hyeog;Kim, Dae-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.60-67
    • /
    • 1999
  • Micro-fabrication techniques such as lithography and LIGA processes usually require large investment and are suitable for mass production. Therefore, there is a need for a new micro-fabrication technique that is flexible and more cost effective. In this paper a novel, economical and flexible method of producing micro-pattern on silicon wafer is presented. This method relies on selective removal of mask by mechanical cutting. Then micro-pattern is produced by chemical etching. V-shaped grooved of about 3 ${\mu}m$ wide and 2 ${\mu}m$ deep has been made on ${SiO_2}m$ coated silicon wafer with this method. This method may be utilized for making microstructures in MEMS application at low cost.

  • PDF

State Monitoring of Micro-Grooving using AE Signal (AE신호를 이용한 micro-grooving의 상태감시)

  • 이희석;손성민;김성렬;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.332-335
    • /
    • 1997
  • With the advance of precision technique, the optical system is more precise and complex and the machining method of optical element which is composed of micro-grooves is developed. Especially, the method of micro-grooving using diamond tool is used widely owing to many merit, but has problems of damage of surface roughness due to tool wear and tool fracture. This paper deals with state monitoring using AE RMS in the micro-grooving. The change of AE RMS is very small with increment of cutting velocity and depth of cut. In spite of constance magnitude of principal force in machining using diamond tool of tool wear and tool fracture, AE RMS is highly fluctuated. Because changing of cutting state has relevance to surface roughness profile, surface toughness profile is expected using AE RMS.

  • PDF

Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement (미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어)

  • 정만실;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF

A study on the fabrication method of middle size LGP using continuous micro-lenses made by LIGA reflow

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.171-176
    • /
    • 2007
  • LCD-BLU (Liquid Crystal Display-Back Light Unit) of medium size is usually manufactured by forming numerous dots with $50{\sim}300\;{\mu}m$ in diameter by etching process and V-grove shape with $50\;{\mu}m$ in height by mechanical cutting process. However, the surface of the etched dots is very rough due to the characteristics of the etching process and V-cutting needs rather high cost. Instead of existing optical pattern made by etching and mechanical cutting, 3-dimensional continuous micro-lens of $200\;{\mu}m$ in diameter was applied in the present study. The continuous micro-lens pattern fabricated by modified LIGA with thermal reflow process was tested to this new optical design of LGP. The manufacturing process using LIGA-reflow is made up of three stages as follows: (i) the stage of lithography, (ii) the stage of thermal reflow process and (iii) the stage of electroplating. The continuous micro-lens patterned LGP was fabricated with injection molding and its test results showed the possibility of commercial use in the future.

A study on the shearing of the straightened micro-wire (미세 와이어의 전단에 관한 연구)

  • Shin Y. S.;Hong N. P.;Kim B. H.;Kim H. Y.;Kim W. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.175-180
    • /
    • 2005
  • In this study, we have developed a novel wire straightener which uses the direct heating method (DHM) fer straightening the micro wire. Also, we have developed a shearing device for cutting the micro wire. In order to avoid the surface oxidization, we supplied the inert gas(Ar) during the heating process and examined the effect of gas flow rate. The effects of the tension and the current applied to the tungsten micro wires were also thoroughly studied. From various experiments and analyses, we could obtain fine straightness $(\approx1\;{\mu}m/1000\;{\mu}m)$ and roundness $(<{\pm}2{\mu}m\;/100{\mu}m)$ when the tension is $500\~~600gf$ and the current is about 1.5A. for burrfree cutting, counter-punch method which two cutters moving contrary was used. The cutting blade has various U-groove angle where upper $10^{\circ}$, $mid:25^{\circ}$, lower $0^{\circ}$. After the shearing process, we confirmed the shearing section.

  • PDF

Experimental Investigation on Machining Feasibility of Micro Patterns using a Single Crystal Diamond Tool (단결정 다이아몬드 공구를 이용한 미세 패턴 가공성에 대한 실험적 분석)

  • Kim, Hyun-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.76-81
    • /
    • 2012
  • The continuing demand for increasingly slimmer and brighter liquid crystal display(LCD) panels has led to an increased focus on the role of the light guide panels(LGPs) or optical films that are used to obtain diffuse, uniform light from the backlight unit(BLU). And the most basic process in the production of such BLU components is the micromachining. LCD BLUs comprise various optical elements such as a LGP, diffuser sheet, prism sheet, and protector sheet with micro patterns. High aspect ratio patterns are required to reduce the number of sheets and enhance light efficiency, but there is a limit to the aspect ratio achievable for a given material and cutting tool. Therefore, this study comprised a series of experimental evaluations conducted to determine the machining feasibility in microcutting various aspect ratio patterns on electroless nickel plated die materials when using single-crystal diamond tools. Cutting performance was evaluated at various cutting speeds and depths of cut using different machining methods and machine tools.

Side Burr Generation Model of Micro-Grooving (미세홈 가공에 있어서 측면버 발생모델)

  • 임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.987-992
    • /
    • 1997
  • Burrs always come out with the machining of ducterial with small size. Though the size of burrs is small, burrs dominate deterioration of the accuracy of the micro grooves. So the burr generation model especially side burr generation model was investigated to predict the size of the burrs at the given cutting conditions. The side shear plane is introduced to build the burr generation model and the width of side shear plane nomalized with cutting depth is defined with the shear angle. From the theoretical observation, the width of side shear plane can vary up 40% of the cutting depth. To determine the size of burr and stiffness, single groovings were carried out and it was found that there exist a critical depth of cut that the size or stiffness of the burr vary.

  • PDF

A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control (반복학습제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Hwang, Joon;Chung, Eui-Sik;Hwang, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.